首页 | 本学科首页   官方微博 | 高级检索  
   检索      

微小杆菌属(Exiguobacterium)细菌的能量代谢途径分析
引用本文:赵芮,李登辉,李学恭,张维佳,赵苑,吴龙飞.微小杆菌属(Exiguobacterium)细菌的能量代谢途径分析[J].微生物学报,2023,63(6):2078-2093.
作者姓名:赵芮  李登辉  李学恭  张维佳  赵苑  吴龙飞
作者单位:中国科学院深海科学与工程研究所 深海微生物细胞生物学实验室, 海南 三亚 572000;中国科学院大学, 北京 101408;青岛华大基因研究院, 山东 青岛 266555;中国科学院海洋研究所 海洋生态与环境科学重点实验室, 山东 青岛 266071;中国科学院海洋大科学研究中心, 山东 青岛 266071;中国科学院深海科学与工程研究所 深海微生物细胞生物学实验室, 海南 三亚 572000;Aix-Marseille University, CNRS, LCB, IMM, Marseille 13402, France
基金项目:国家自然科学基金(42176121,42076139)
摘    要:【目的】微小杆菌属(Exiguobacterium)细菌广泛分布于海洋及非海洋环境中,具有多种代谢途径以适应复杂多样的生境。本研究从能量代谢途径角度出发,探究该属菌株对不同生境的适应能力。【方法】从美国国家生物科技数据中心(National Center for Biotechnology Information, NCBI)数据库中获取146个Exiguobacterium属菌株的基因组,查找并统计光营养、厌氧呼吸和底物代谢等多种能量代谢途径的关键蛋白或关键酶基因在各菌株基因组中的分布,包括光营养型的视紫红质基因、厌氧呼吸营养型的钼辅因子合成蛋白基因,以及底物代谢营养型中乙醛酸分流途径的异柠檬酸裂解酶及苹果酸合酶基因等。根据对应的氨基酸序列构建视紫红质、MoaC和异柠檬酸裂解酶的系统发育树,分析不同能量代谢途径在该属菌株进化过程中的保守性,推测其对于该属菌株的重要性。【结果】Exiguobacterium属中50%的种具有视紫红质基因,其中分离自非海洋生境的菌株更趋向于含有视紫红质基因。本研究所统计的全部非海洋生境菌株中,含有视紫红质基因的菌株占比约为70%,而在海洋生境菌株中该比例...

关 键 词:微小杆菌属  能量代谢  视紫红质  钼酶  钼辅因子  乙醛酸分流
收稿时间:2022/11/3 0:00:00
修稿时间:2023/3/17 0:00:00

Energy metabolism pathways in Exiguobacterium
ZHAO Rui,LI Denghui,LI Xuegong,ZHANG Weiji,ZHAO Yuan,WU Long-Fei.Energy metabolism pathways in Exiguobacterium[J].Acta Microbiologica Sinica,2023,63(6):2078-2093.
Authors:ZHAO Rui  LI Denghui  LI Xuegong  ZHANG Weiji  ZHAO Yuan  WU Long-Fei
Institution:Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, Hainan, China;University of Chinese Academy of Sciences, Beijing 101408, China;BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, Shandong, China;CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China;Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, Hainan, China;Aix-Marseille University, CNRS, LCB, IMM, Marseille 13402, France
Abstract:Objective] Bacteria of Exiguobacterium are ubiquitous in marine and non-marine environments and display versatile metabolism pathways to adapt to complex and diverse habitats. In this study, we explored the adaptability of Exiguobacterium to different habitats from the perspective of energy metabolism pathways. Methods] The genomes of a total 146 Exiguobacterium strains available at National Center for Biotechnology Information (NCBI) database were downloaded for the mining of the genes encoding key enzymes of multiple energy metabolism pathways. The encoded enzymes mainly included rhodopsin for phototrophy, molybdenum cofactor synthesis protein for anaerobic respiration, and isocitrate lyase and malate synthase for glyoxylate shunt. We then built the phylogenetic trees based on the amino acid sequences of rhodopsin, MoaC, and isocitrate lyase to analyze the conservation of different energy metabolism pathways. Results] Fifty percent of Exiguobacterium species possessed rhodopsin gene. The strains isolated from non-marine habitats tended to carry rhodopsin gene, accounting for about 70%, while the strains carrying rhodopsin gene from marine habitats accounted for only 19%. Approximately 27% of species possessed the gene encoding molybdenum cofactor synthesis protein, and the strains isolated from marine habitats (32%) carrying this gene were more than those from non-marine habitats (21%). The strains with complete molybdenum cofactor synthesis pathway concentrated in several species, sharing the same branch on the phylogenetic tree. The glyoxylate shunt existed in approximately 61% of the species, which clustered in the same branch of the phylogenetic tree. All the strains of such species possessed related genes, which indicated that this pathway had species specificity in Exiguobacterium. Conclusion] The key genes for energy metabolism vary in different species or different strains of Exiguobacterium. The diversity of energy metabolism pathways may, to some extent, facilitate the adaptation of these bacteria to complex habitats. Furthermore, the distribution of most energy metabolism pathways is not species-specific for this genus. This finding suggests that the prediction of metabolic types of targeted strains by 16S rRNA gene-based species identification alone may be biased and limited.
Keywords:Exiguobacterium  energy metabolism  rhodopsin  molybdoenzyme  molybdenum cofactor  glyoxylate shunt
本文献已被 维普 等数据库收录!
点击此处可从《微生物学报》浏览原始摘要信息
点击此处可从《微生物学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号