首页 | 本学科首页   官方微博 | 高级检索  
   检索      

酸性旱地红壤无机氮同化菌株筛选及其全基因组分析
引用本文:刘冉,姜允斌,邓欢,张银萍,韩成,钟文辉.酸性旱地红壤无机氮同化菌株筛选及其全基因组分析[J].微生物学报,2023,63(8):3157-3172.
作者姓名:刘冉  姜允斌  邓欢  张银萍  韩成  钟文辉
作者单位:南京师范大学地理科学学院, 江苏 南京 210023;南京师范大学地理科学学院, 江苏 南京 210023;江苏省物质循环与污染控制重点实验室, 江苏 南京 210023;江苏省物质循环与污染控制重点实验室, 江苏 南京 210023;南京师范大学环境学院, 江苏 南京 210023;南京师范大学分析测试中心, 江苏 南京 210023
基金项目:国家自然科学基金(42077033,42277287,41730753)
摘    要:微生物执行的无机氮同化作用可固定施入土壤后未被作物直接吸收的化学氮肥,有效减少化学氮肥损失、降低环境氮素污染风险。土壤无机氮同化作用不是由大量冗余微生物共同执行的,而是由一小部分功能微生物优先执行。【目的】对酸性旱地红壤中的优势无机氮同化细菌进行富集、菌株分离鉴定及全基因组测序,并明确菌株在土壤中的氮同化能力,为酸性土壤化学氮肥应用及其转化过程研究提供菌株资源和理论依据。【方法】在酸性旱地红壤中添加KNO3或(NH4)2SO4作为无机氮源,以葡萄糖作为碳源,在好氧条件下进行富集预培养,采用稀释分离法筛选出优势无机氮同化细菌菌株;将菌株回接至土壤中从而验证其无机氮同化能力,并通过全基因组测序分析菌株的氮素代谢途径及相关功能基因。【结果】酸性旱地红壤经富集预培养一周后,优势无机氮同化微生物的16SrRNA基因相对丰度从0.20%–0.94%增长至20.2%–30.2%;分离筛选后得到的3株优势无机氮同化细菌菌株,鉴定为伯克霍尔德氏菌(Burkholderia sp.) M6-3、索状芽孢杆菌(Bacillus funiculus) M2-4和节杆菌(Arthrobacter sp.) M7...

关 键 词:土壤氮素同化  化学氮肥  酸性旱地红壤  全基因组测序  伯克霍尔德氏菌属
收稿时间:2022/12/2 0:00:00
修稿时间:2023/2/17 0:00:00

Isolation and whole genome analysis of bacterial strains assimilating inorganic nitrogen in acidic dryland red soils
LIU Ran,JIANG Yunbin,DENG Huan,ZHANG Yinping,HAN Cheng,ZHONG Wenhui.Isolation and whole genome analysis of bacterial strains assimilating inorganic nitrogen in acidic dryland red soils[J].Acta Microbiologica Sinica,2023,63(8):3157-3172.
Authors:LIU Ran  JIANG Yunbin  DENG Huan  ZHANG Yinping  HAN Cheng  ZHONG Wenhui
Institution:School of Geography, Nanjing Normal University, Nanjing 210023, Jiangsu, China;School of Geography, Nanjing Normal University, Nanjing 210023, Jiangsu, China;Key Laboratory of Material Cycle and Pollution Control of Jiangsu Province, Nanjing 210023, Jiangsu, China;Key Laboratory of Material Cycle and Pollution Control of Jiangsu Province, Nanjing 210023, Jiangsu, China;School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China;Center for Analysis and Testing, Nanjing Normal University, Nanjing 210023, Jiangsu, China
Abstract:Inorganic nitrogen assimilation performed by microorganisms can immobilize chemical fertilizer nitrogen that is not directly absorbed by crops after application to the soil, which can reduce the losses of chemical nitrogen fertilizer and the risk of environmental nitrogen pollution. Soil inorganic nitrogen assimilation is performed by functional microbial populations rather than a large number of redundant microorganisms. Objective] The enrichment, isolation, identification, and whole genome sequencing of dominant inorganic nitrogen-assimilating bacteria in acidic dryland red soil and clarification of the nitrogen assimilation capacity of the strains in soil can provide strain resources and a theoretical basis for the application of chemical nitrogen fertilizer in acidic soil and the research on the nitrogen transformation process. Methods] We added KNO3 or (NH4)2SO4 as the inorganic nitrogen source and glucose as the carbon source into the acidic dryland red soil. Then, we performed strain enrichment under aerobic conditions and screened the dominant bacterial strains assimilating inorganic nitrogen by the gradient dilution isolation method. We verified the inorganic nitrogen assimilation ability of the strains by soil recolonization experiments, and employed whole genome sequencing to analyze the nitrogen metabolic pathways of different strains. Results] The relative abundance of 16S rRNA genes of dominant inorganic nitrogen-assimilating microorganisms in acidic dryland red soils increased from 0.20%-0.94% to 20.2%-30.2% after one week of enrichment. We isolated three dominant inorganic nitrogen-assimilating strains, which were identified as Burkholderia sp. M6-3, Bacillus funiculus M2-4, and Arthrobacter sp. M7-15. The inorganic nitrogen assimilation rates of strains M6-3, M2-4, and M7-15 in sterilized soil were (1.28±0.61), (0.17±0.07), and (0.16±0.02) mg/(kg·d), respectively. M6-3 possessed a more complete metabolic pathway and more functional genes related to nitrogen assimilation than the other two strains. In terms of nitrogen metabolic pathways and functional activity, Burkholderia sp. M6-3 was dominant in the assimilation of inorganic nitrogen in acidic dryland red soils. Conclusion] This study confirmed that low-abundance microbial taxa play a dominant role in the inorganic nitrogen assimilation of acidic dryland red soil, and revealed the metabolic process of inorganic nitrogen assimilation at the genomic level of the strains. The above results provide strain resources and a theoretical basis for the study of chemical nitrogen fertilizer application and transformation process in the acidic dryland red soil.
Keywords:soil nitrogen assimilation  chemical nitrogen fertilizer  acidic dryland red soil  whole genome sequencing  Burkholderia sp  
本文献已被 维普 等数据库收录!
点击此处可从《微生物学报》浏览原始摘要信息
点击此处可从《微生物学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号