首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chimeric ribonuclease as a source of human adapter protein for targeted drug delivery
Authors:Gaynutdinov Timur I  Myshkin Eugene  Backer Joseph M  Backer Marina V
Institution:SibTech, Inc., Newington, CT 06111, USA.
Abstract:Assembled modular complexes for targeted drug delivery can be based on strong non-covalent interactions between a cargo module containing an adapter protein and a docking tag fused to a targeting protein. We have recently constructed a completely humanized adapter/docking tag system based on interactions between 15 amino acid (Hu-tag) and 110 amino acid (HuS) fragments of human ribonuclease I (RNase I). Although recombinant HuS can be expressed and refolded into a functionally active form, the purification procedure is cumbersome and expensive, and more importantly, it yields a significant proportion of improperly folded proteins. Here we describe engineering, high-yield expression, and purification of a chimeric bovine/human RNase (BH-RNase) comprising 1-29 N-terminal amino acids of bovine ribonuclease A and 30-127 amino acids of human RNase I. Unlike RNase I, the chimeric BH-RNase can be cleaved by either subtilisin or proteinase K between A20 and S21, providing a functionally active HuS. The HuS obtained from chimeric BH-RNase differs from wild-type HuS by an N24T substitution; therefore, we have reverted this substitution by mutating N24 to T24 in BH-RNase. This BH-RNase mutant can also be cleaved by subtilisin or proteinase K yielding wild-type HuS. The affinity of HuS obtained from BH-RNase to Hu-tag is approximately five times higher than that for recombinant HuS, reflecting a higher percentage of properly folded proteins.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号