首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance
Authors:Delhaize Emmanuel  Gruber Benjamin D  Pittman Jon K  White Rosemary G  Leung Helen  Miao Yansong  Jiang Liwen  Ryan Peter R  Richardson Alan E
Institution:CSIRO Plant Industry, Canberra, ACT, Australia. manny.delhaize@csiro.au
Abstract:The Arabidopsis AtMTP family of genes encode proteins of the cation diffusion facilitator (CDF) family, with several members having roles in metal tolerances. Four of the 11 proteins in the family form a distinct cluster on a phylogenetic tree and are closely related to ShMTP8, a CDF identified in the tropical legume Stylosanthes hamata that is implicated in the transport of Mn(2+) into the vacuole as a tolerance mechanism. Of these four genes, AtMTP11 was the most highly expressed member of the Arabidopsis subgroup. When AtMTP11 was expressed in Saccharomyces cerevisiae, it conferred Mn(2+) tolerance and transported Mn(2+) by a proton-antiport mechanism. A mutant of Arabidopsis with a disrupted AtMTP11 gene (mtp11) was found to have increased sensitivity to Mn(2+) but not to Cu(2+) or Zn(2+). At a non-toxic but sufficient Mn(2+) supply (basal), the mutant accumulated more Mn(2+) than the wild type, but did not show any obvious deleterious effects on growth. When grown with Mn(2+) supplies that ranged from basal to toxic, the mutant accumulated Mn(2+) concentrations in shoots similar to those in wild-type plants, despite showing symptoms of Mn(2+) toxicity. AtMTP11 fused to green fluorescent protein co-localized with a reporter specific for pre-vacuolar compartments. These findings provide evidence for Mn(2+)-specific transport activity by AtMTP11, and implicate the pre-vacuolar compartments in both Mn(2+) tolerance and Mn(2+) homeostasis mechanisms of Arabidopsis.
Keywords:AtMTP11            manganese tolerance  transport  cation/proton antiport  vacuole
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号