首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Antisense inhibition of NADH glutamate synthase impairs carbon/nitrogen assimilation in nodules of alfalfa (Medicago sativa L.)
Authors:Cordoba Elizabeth  Shishkova Svetlana  Vance Carroll P  Hernández Georgina
Institution:Centro de Investigación sobre Fijación de Nitrógeno, UNAM, Ap. Postal 565-A, Cuernavaca, Mor. México.
Abstract:Legumes acquire significant amounts of nitrogen for growth from symbiotic nitrogen fixation. The glutamine synthetase (GS)/NADH-dependent glutamate synthase (NADH-GOGAT) cycle catalyzes initial nitrogen assimilation. This report describes the impact of specifically reducing nodule NADH-GOGAT activity on symbiotic performance of alfalfa (Medicago sativa L.). Four independent transgenic alfalfa lines, designated GA89, GA87, GA88, and GA82 (for GOGATantisense), containing an antisense NADH-GOGAT cDNA fragment under the control of the soybean leghemoglobin (lbc3) promoter were evaluated. The GA plants were fertile and showed normal growth in non-symbiotic conditions. The NADH-GOGAT antisense transgene was heritable and the T1 plants showed phenotypic alterations - similar to primary transformants. Clonally propagated plants were inoculated with Sinorhizobium meliloti after rooting and the symbiotic phenotype was analyzed 21 days post-inoculation. Nodules of each GA line had reduced NADH-GOGAT activity, ranging from 33 to 87% of control plants, that was accompanied by comparable decreases in RNA and protein. Plants from the GA89 line, with the lowest NADH-GOGAT activity (c. 30%), presented a strikingly altered symbiotic phenotype: concomitantly activities of key enzyme for carbon and nitrogen assimilation decreased; nodule amino acids and amides were reduced while sucrose accumulated. Antisense GOGAT plants were chlorotic, reduced in fresh weight, and had a lower N content than control plants. Photosynthesis was also impaired in antisense plants. Specifically, reducing NADH-GOGAT in nodules resulted in plants having impaired nitrogen assimilation and altered carbon/nitrogen metabolic flux.
Keywords:NADH-glutamate synthase  antisense transgenic alfalfa              S  meliloti–alfalfa symbiosis  C  N metabolism in nodules  symbiotic N fixation
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号