首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Influence of Nitrate and Ammonium Nutrition on the Growth of Wheat (Triticum aestivum) and Maize (Zea mays) Plants
Authors:Cramer  M D; Lewis  O AM
Institution:Department of Botany, University of Cape Town, Rondebosh, 7700, South Africa
Abstract:The effects of NO-3 and NH+4 nutrition on hydroponically grownwheat (Triticum aestivum L.) and maize (Zea mays L.) were assessedfrom measurements of growth, gas exchange and xylem sap nitrogencontents. Biomass accumulation and shoot moisture contents ofwheat and maize were lower with NH+4 than with NO-3 nutrition.The shoot:root ratios of wheat plants were increased with NH+4compared to NO-3 nutrition, while those of maize were unaffectedby the nitrogen source. Differences between NO-3 and NH+4-fedplant biomasses were apparent soon after introduction of thenitrogen into the root medium of both wheat and maize, and thesedifferences were compounded during growth. Photosynthetic rates of 4 mM N-fed wheat were unaffected bythe form of nitrogen supplied whereas those of 12 mM NH+4-fedwheat plants were reduced to 85% of those 12 mM NO-3-fed wheatplants. In maize supplied with 4 and 12 mM NH+4 the photosyntheticrates were 87 and 82% respectively of those of NO-3-fed plants.Reduced photosynthetic rates of NH+4 compared to NO-3-fed wheatand maize plants may thus partially explain reduced biomassaccumulation in plants supplied with NH+4 compared to NO-3 nutrition.Differences in the partitioning of biomass between the shootsand roots of NO-3-and NH+4-fed plants may also, however, arisefrom xylem translocation of carbon from the root to the shootin the form of amino compounds. The organic nitrogen contentof xylem sap was found to be considerably higher in NH+4- thanin NO-3-fed plants. This may result in depletion of root carbohydrateresources through translocation of amino compounds to the shootin NH+4-fed wheat plants. The concentration of carbon associatedwith organic nitrogen in the xylem sap of maize was considerablyhigher than that in wheat. This may indicate that the shootand root components of maize share a common carbon pool andthus differences induced by different forms of inorganic nitrogenare manifested as altered overall growth rather than changesin the shoot:root ratios.Copyright 1993, 1999 Academic Press Triticum aestivum, wheat, Zea mays, maize, nitrogen, growth, photosynthesis, amino acids, xylem
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号