首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Lectin localization in human nerve by biochemically defined lectin-binding glycoproteins,neoglycoprotein and lectin-specific antibody
Authors:H -J Gabius  B Wosgien  M Hendrys  A Bardosi
Institution:(1) Max-Planck-Institut für experimentelle Medizin, Abteilung Chemie, Hermann-Rein-Strasse 3, W-3400 Göttingen, Federal Republic of Germany;(2) Institut für Pathologie, Akademisches Lehrkrankenhaus der Universität Münster, Röntgenstrasse 18, W-4930 Detmold, Federal Republic of Germany
Abstract:Summary Molecular recognition can be mediated by protein (lectin)-carbohydrate interaction, explaining the interest in this topic. Plant lectins and, more recently, chemically glycosylated neoglycoproteins principally allow to map the occurrence of components of this putative recognition system. Labelled endogenous lectins and the lectin-binding ligands can add to the panel of glycohistochemical tools. They may be helpful to derive physicologically valid conclusions in this field for mammalian tissues. Consequently, experiments were prompted to employ the abundant beta-galactoside-specific lectin of human nerves in affinity chromatography and in histochemistry to purify and to localize its specific glycoprotein ligands. In comparison to the beta-galactoside-specific plant lectins fromRicinus communis andErythrina cristagalli, notable similarities were especially detectable in the respective profiles of the mammalian and the Erythrina lectin. They appear to account for rather indistinguishable staining patterns in fixed tissue sections. Inhibitory controls within affinity chromatography, within solid-phase assays for each fraction of lectin-binding glycoproteins and within histochemistry as well as the demonstration of crossreactivity of the three fractions of lectin-binding glycoproteins with the biotinylated Erythrina lectin in blotting ascertained the specificity of the lectin-glycoprotein interaction. In addition to monitoring the accessible cellular ligand part by the endogenous lectin as probe, the comparison of immunohistochemical and glycohistochemical detection of the lectin in serial sections proved these methods for receptor analysis to be rather equally effective. The observation that the biotinylated lectin-binding glycoproteins are also appropriate ligands in glycohistochemical analysis warrants emphasis. Overall, the introduction of biotinylated mammalian lectins as well as the lectin-binding glycoproteins will aid to critically evaluate the physiological significance of the glycobiological interplay between endogenous lectins and distinct carbohydrate parts of cellular glycoconjugates.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号