首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Loss of Oca2 disrupts the unfolded protein response and increases resistance to endoplasmic reticulum stress in melanocytes
Authors:Tsing Cheng  Seth J Orlow  Prashiela Manga
Institution:The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, , New York, NY, USA
Abstract:Accumulation of proteins in the endoplasmic reticulum (ER) typically induces stress and initiates the unfolded protein response (UPR) to facilitate recovery. If homeostasis is not restored, apoptosis is induced. However, adaptation to chronic UPR activation can increase resistance to subsequent acute ER stress. We therefore investigated adaptive mechanisms in Oculocutaneous albinism type 2 (Oca2)‐null melanocytes where UPR signaling is arrested despite continued tyrosinase accumulation leading to resistance to the chemical ER stressor thapsigargin. Although thapsigargin triggers UPR activation, instead of Perk‐mediated phosphorylation of eIF2α, in Oca2‐null melanocytes, eIF2α was rapidly dephosphorylated upon treatment. Dephosphorylation was mediated by the Gadd34‐PP1α phosphatase complex. Gadd34‐complex inhibition blocked eIF2α dephosphorylation and significantly increased Oca2‐null melanocyte sensitivity to thapsigargin. Thus, Oca2‐null melanocytes adapt to acute ER stress by disruption of pro‐apoptotic Perk signaling, which promotes cell survival. This is the first study to demonstrate rapid eIF2α dephosphorylation as an adaptive mechanism to ER stress.
Keywords:unfolded protein response  eIF2α    melanocyte  oculocutaneous albinism type 2  ER stress
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号