首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Diversification of unicellular eukaryotes: cryptomonad colonizations of marine and fresh waters inferred from revised 18S rRNA phylogeny
Authors:Shalchian-Tabrizi Kamran  Bråte Jon  Logares Ramiro  Klaveness Dag  Berney Cédric  Jakobsen Kjetill S
Institution:Microbial Evolution Research Group, Department of Biology, University of Oslo, Norway. kamran@bio.uio.no
Abstract:The cryptomonads is a well-defined lineage of unicellular eukaryotes, composed of several marine and freshwater groups. However, the evolutionary relationships among these groups are unclear due to conflicting inferences between morphological and molecular phylogenies. Here, we have inferred the evolutionary relationships among marine and freshwater species in order to better understand the importance of the marine-freshwater boundary on the historical diversification patterns of cryptomonads. We have constructed improved molecular phylogenies by taking into account rate variation both across sites and across sequences (covarion substitutions), and by analysing the vast majority of publicly available cryptomonad 18S rRNA sequences and related environmental phylotypes. The resulting phylogenies included 55 sequences, and revealed two novel freshwater cryptomonad clades (CRY1 and CRY2) and a large hidden diversity of cryptomonads. CRY1 was placed deeply within the cryptomonad phylogeny together with all the major freshwater lineages (i.e. Goniomonas and Cryptomonas), while CRY2 was placed within a lineage of marine species identified as Plagioselmis-like with the aid of a new sequence generated from a cultured species. The inferred phylogenies suggest only few successful marine-freshwater transitions over the history of cryptomonads. Most of the transitions seem to have occurred from marine to fresh waters, but re-colonizations of marine habitats have also taken place. This implies that the differences in the biogeophysical conditions between marine and fresh waters constitute a substantial barrier for the cross-colonization of these environments by cryptomonads.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号