首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genetic and epigenetic interactions in allopolyploid plants
Authors:Comai  Luca
Institution:(1) Department of Botany, University of Washington, Box 355325, Seattle, WA 98195-5325, USA
Abstract:Allopolyploid plants are hybrids that contain two copies of the genome from each parent. Whereas wild and cultivated allopolyploids are well adapted, man-made allopolyploids are typically unstable, displaying homeotic transformation and lethality as well as chromosomal rearrangements and changes in the number and distribution of repeated DNA sequences within heterochromatin. Large increases in the length of some chromosomes has been documented in allopolyploid hybrids and could be caused by the activation of dormant retrotransposons, as shown to be the case in marsupial hybrids. Synthetic (man-made) allotetraploids of Arabidopsis exhibit rapid changes in gene regulation, including gene silencing. These regulatory abnormalities could derive from ploidy changes and/or incompatible interactions between parental genomes, although comparison of auto- and allopolyploids suggests that intergenomic incompatibilities play the major role. Models to explain intergenomic incompatibilities incorporate both genetic and epigenetic mechanisms. In one model, the activation of heterochromatic transposons (McClintock's genomic shock) may lead to widespread perturbation of gene expression, perhaps by a silencing interaction between activated transposons and euchromatic genes. Qualitatively similar responses, of lesser intensity, may occur in intraspecific hybrids. Therefore, insight into genome function gained from the study of allopolyploidy may be applicable to hybrids of any type and may even elucidate positive interactions, such as those responsible for hybrid vigor.
Keywords:chromosome evolution  gene silencing  heterochromatin  interspecific hybridization  recombination  transposons
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号