首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression
Authors:Kent F McCue  Andrew D Hanson
Institution:(1) DOE Plant Research Laboratory, Michigan State University, 48824-1312 East Lansing, MI, USA;(2) Centre de Recherche en Biologie végétale, 4101 rue Sherbrooke Est, H1X 2B2 Montréal, Québec, Canada
Abstract:Members of the Chenopodiaceae, such as sugar beet and spinach, accumulate glycine betaine in response to salinity or drought stress. The last enzyme in the glycine betaine biosynthetic pathway is betaine aldehyde dehydrogenase (BADH). In sugar beet the activity of BADH was found to increase two- to four-fold in both leaves and roots as the NaCl level in the irrigation solution was raised from 0 to 500 mM. This increase in BADH activity was paralleled by an increase in level of translatable BADH mRNA. Several cDNAs encoding BADH were cloned from a lambdagt10 libary representing poly(A)+ RNA from salinized leaves of sugar beet plants, by hybridization with a spinach BADH cDNA. Three nearly full-length cDNA clones were confirmed to encode BADH by their nucleotide and deduced amino acid sequence identity to spinach BADH; these clones showed minor nucleotide sequence differences consistent with their being of two different BADH alleles. The clones averaged 1.7 kb and contained an open reading frame predicting a polypeptide of 500 amino acids with 83% identity to spinach BADH. RNA gel blot analysis of total RNA showed that salinization to 500 mM NaCl increased BADH mRNA levels four-fold in leaves and three-fold in the taproot. DNA gel blot analyses indicated the presence of at least two copies of BADH in the haploid sugar beet genome.
Keywords:betaine aldehyde dehydrogenase  gene expression  glycine betaine  osmotic stress  salt tolerance  sugar beet
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号