首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold
Authors:Atsushi Sakamoto  Alia Norio Murata
Institution:(1) National Institute for Basic Biology, Myodaiji, Okazaki, 444-8585, Japan
Abstract:Genetically engineered rice (Oryza sativa L.) with the ability to synthesize glycinebetaine was established by introducing the codA gene for choline oxidase from the soil bacterium Arthrobacter globiformis. Levels of glycinebetaine were as high as 1 and 5 mgrmol per gram fresh weight of leaves in two types of transgenic plant in which choline oxidase was targeted to the chloroplasts (ChlCOD plants) and to the cytosol (CytCOD plants), respectively. Although treatment with 0.15 m NaCl inhibited the growth of both wild-type and transgenic plants, the transgenic plants began to grow again at the normal rate after a significantly less time than the wild-type plants after elimination of the salt stress. Inactivation of photosynthesis, used as a measure of cellular damage, indicated that ChlCOD plants were more tolerant than CytCOD plants to photoinhibition under salt stress and low-temperature stress. These results indicated that the subcellular compartmentalization of the biosynthesis of glycinebetaine was a critical element in the efficient enhancement of tolerance to stress in the engineered plants.
Keywords:choline oxidase  genetic engineering  glycinebetaine  low-temperature tolerance  salt tolerance  transgenic rice
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号