首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Divergence and allelomorphic relationship of a soybean virus resistance gene based on tightly linked DNA microsatellite and RFLP markers
Authors:Y G Yu  M A Saghai Maroof  G R Buss
Institution:(1) Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University Blacksburg, 24061, VA, USA
Abstract:The use of genetically diverse resistance sources is important in breeding for durable disease resistance. Detection and evaluation of resistance genes by conventional inheritance experiments, however, often require laborious screening and genetic testing. In the present study, a marker-assisted screening for resistance sources was initiated in soybean Glycine max (L.) Merr] using one DNA microsatellite and two RFLP markers tightly linked to a soybean mosaic virus (SMV) resistance gene (Rsv1). The three marker loci were used to screen 67 diverse soybean cultivars, breeding lines, and plant introductions. Five variants were found at the microsatellite locus (HSP176L), and the two RFLP loci (pA186 and pK644a) near Rsv1 show a remarkably higher level of restriction polymorphism than Rsv1-independent RFLP loci. Several specific variants at the three marker loci were found to be correlated with virus resistance, among which HSP176L-2 can be detected by PCR, thus may be useful for germplasm screening. The grouping of the 67 accessions according to their multilocus marker variants agrees with the available pedigree information. When all, or most, of the cultivars within a given group with the same Rsv1-linked marker variant are resistant, their SMV resistance is most likely conferred by Rsv1. These putatively Rsv1-carrying groups contain a total of 38 SMV-resistant lines including six differential cultivars that are known to carry Rsv1. The remaining seven resistant accessions (Columbia, Holladay, Peking, Virginia, FFR-471, PI 507403, and PI 556949) do not carry resistance marker variants, and at least some of them could be sources of resistance genes independent of Rsv1.
Keywords:Glycine max  Potyvirus  Disease resistance  Germplasm  Simple sequence repeat (SSR)  Marker-assisted screening
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号