首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genetic diversity for RFLPs in European maize inbreds
Authors:A E Melchinger  J Boppenmaier  B S Dhillon  W G Pollmer  R G Herrmann
Institution:(1) Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Postfach 70 05 62, W-7000 Stuttgart 70, Germany;(2) Institute of Botany, Ludwig-Maximilians University, Menzinger Str. 67, W-8000 Munich 19, Germany
Abstract:Summary Restriction fragment length polymorphisms (RFLPs) have been proposed for the prediction of the yield potential of hybrids and the assignment of inbreds to heterotic groups. Such use was investigated in 66 diallel crosses among 6 flint and 6 dent inbreds from European maize (Zea mays L.) germ plasm. Inbreds and hybrids were evaluated for seven forage traits in four environments in the Federal Republic of Germany. Midparent heterosis (MPH) and specific combining ability (SCA) were calculated. Genetic distances (GD) between lines were calculated from RFLP data of 194 clone-enzyme combinations. GDs were greater for flint x dent than for flint x flint and dent x dent line combinations. Cluster analysis based on GDs showed separate groupings of flint and dent lines and agreed with pedigree information, except for 1 inbred. GDs of all line combinations in the diallel were partitioned into general (GGD) and specific (SGD) genetic distances; GGD explained approximately 20% of the variation among GD values. For the 62 diallel crosses (excluding 4 crosses of highly related lines), correlations of GD with F1 performance, MPH, and SCA for dry matter yield (DMY) of stover, ear, and forage were positive but mostly of moderate size (0.09lerle0.60) compared with the higher correlations (0.39lerle0.77) of SGD with these traits. When separate calculations were performed for various subsets, correlations of GD and SGD with DMY traits were generally small (r<0.47) for the 36 flint x dent crosses, significantly positive (r<0.53) for the 14 flint x flint crosses, and inconclusive for the 12 dent x dent crosses because of the lack of significant genotypic variation. Results indicated that RFLPs can be used for assigning inbreds to heterotic groups. RFLP-based genetic distance measures seem to be useful for predicting forage yield of (1) crosses between lines from the same germ plasm group or (2) crosses including line combinations from the same as well as different heterotic groups. However, they are not indicative of the hybrid forage yield of crosses between unrelated lines from genetically divergent heterotic groups.
Keywords:RFLPs  Heterosis  Genetic distances  Prediction  Zea mays L  
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号