首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Experimental evaluation of the potential of tropical germplasm for temperate maize improvement
Authors:S P Tallury  M M Goodman
Institution:(1) Department of Crop Science, Box 7620, North Carolina State University, Raleigh, NC 27695-7620, USA Fax:+1-919-515-7959 E-mail: maize–resources@ncsu.edu, US
Abstract: Commercial maize (Zea mays L.) in the USA has a restricted genetic base as newer hybrids are largely produced from crosses among elite inbred lines representing a small sample (predominantly about 6- to 8-base inbreds) of the Stiff stalk and Lancaster genetic backgrounds. Thus, expansion of genetic diversity in maize has been a continuous challenge to breeders. Tropical germplasm has been viewed as a useable source of diversity, although the integration of tropical germplasm into existing inbred line and hybrid development is laborious. The present study is an evaluation of the potential of tropical germplasm for temperate maize improvement. All possible single-, three-way-, and double-cross hybrids among three largely temperate and three temperate-adapted, all-tropical inbred lines were evaluated in yield-trial tests. Single-cross hybrids containing as much as 50–60% tropical germplasm produced 8.0 t ha-1 of grain yield, equivalent to the mean yield of the commercial check hybrids. On the other hand, three-way and double-cross hybrids with the highest mean yield contained lower amounts of tropical germplasm, 10–19% and 34–44%, respectively. Overall, hybrids containing 10–60% tropical germplasm yielded within the range of the commercial hybrid checks. Hybrids with more than 60% tropical germplasm had significantly lower yields, and 100% tropical hybrids yielded the least among all hybrids evaluated. The results indicate that inbred lines containing tropical germplasm are not only a useful source to expand the genetic diversity of commercial maize hybrids, but they, also are competitive in crosses with temperate materials, producing high-yielding hybrids. These experimental hybrids exhibited good standability (comparable to the commercial check hybrids) but contained 1–2% higher grain moisture, leading to delayed maturity. Recurrent selection procedures are being conducted on derivatives of these materials to extract lines with superior yield, good standability, and reduced grain moisture which can be used for commercial exploitation. Received: 26 January 1998 / Accepted: 14 July 1998
Keywords:  Zea mays L    Genetic diversity  Tropical germplasm  Temperate inbreds  Combining ability
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号