首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Testicular germ cell sensitivity to TRAIL-induced apoptosis is dependent upon p53 expression and is synergistically enhanced by DR5 agonistic antibody treatment
Authors:Chad M McKee  Yang Ye  John H Richburg
Institution:(1) Graduate Program in Molecular and Cellular Biology, Austin, Texas 78712-1074, USA;(2) The University of Texas at Austin, College of Pharmacy, PHR 5.218D, Austin, Texas 78712-1074, USA
Abstract:The ability of the TRAIL/DR5 signaling pathway to induce apoptosis has generally been limited to tumor cells. Here we report that in primary testis explants, addition of TRAIL (0.5 μg/ml) caused a three-fold increase in germ cell apoptosis. Furthermore, exposure of C57BL/6 mice to the testicular toxicant, mono-(2-ethylhexyl) phthalate (MEHP), caused an increased p53 stability and elevated DR5 mRNA levels coincident with increases in the levels of apoptosis in spermatocytes. To further assess the mechanisms responsible for the sensitivity of germ cells to undergo TRAIL/DR5-mediated apoptosis, we used the germ cell lines GC-1spg and GC-2spd(ts) (a temperature sensitive spermatocyte-like cell line that allows for p53 nuclear localization at 32°C but not 37°C). Addition of TRAIL and the anti-DR5 monoclonal antibody, MD5-1, triggered a robust synergistic increase of apoptosis in p53 permissive GC-2 cells (32°C) but not in GC-1 cells. In addition, DR5 levels on the plasma membrane of permissive cells were considerably enhanced concomitant with p53 expression and after MD5-1 treatment. These data represent the first indication that testicular germ cells, specifically spermatocytes, can undergo TRAIL-mediated apoptosis and the clinically relevant observation that pretreatment with a DR5 monoclonal antibody can greatly sensitize their apoptotic response to TRAIL. This work was supported, in part, by grants from the National Institute of Environmental Health Sciences/NIH (ES09145, JHR), Toxicology Training grant (ES T32 ES007247, CM), NIH Center Grant (P30 ES07784, JHR) and the Center for Molecular and Cellular Toxicology (CMCT).
Keywords:Apoptosis  TRAIL  Testis  Death receptor 5 (DR5)  GC-2spd (ts)
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号