首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Green tea extract protects against early alcohol-induced liver injury in rats
Authors:Arteel Gavin E  Uesugi Takehiko  Bevan Leslie N  Gäbele Erwin  Wheeler Michael D  McKim Stephen E  Thurman Ronald G
Institution:Department of Pharmacology, University of North Carolina at Chapel Hill, 27599-7365, USA.
Abstract:Oxidants have been shown to be involved in alcohol-induced liver injury. This study was designed to test the hypothesis that the antioxidant polyphenolic extract of green tea, comprised predominantly of epigallocatechin gallate, protects against early alcohol-induced liver injury in rats. Male Wistar rats were fed high-fat liquid diets with or without ethanol (10-14 g kg(-1) day(-1)) and green tea (300 mg kg(-1) day(-1)) continuously for 4 weeks using an intragastric enteral feeding protocol. Mean body weight gains (approximately 4 g/day) were not significantly different between treatment groups, and green tea extract did not the affect average concentration or the cycling of urine ethanol concentrations (0-550 mg dl(-1) day(-1)). After 4 weeks, serum ALT levels were increased significantly about 4-fold over control values (35+/-3 IU/l) by enteral ethanol (114+/-18); inclusion of green tea extract in the diet significantly blunted this increase (65+/-10). Enteral ethanol also caused severe fatty accumulation, mild inflammation, and necrosis in the liver. While not affecting fat accumulation or inflammation, green tea extract significantly blunted increases in necrosis caused by ethanol. Furthermore, ethanol significantly increased the accumulation of protein adducts of 4-hydroxynonenal, a product of lipid peroxidation and an index of oxidative stress; green tea extract blocked this effect almost completely. TNFalpha protein levels were increased in liver by alcohol; this phenomenon was also blunted by green tea extract. These results indicate that simple dietary antioxidants, such as those found in green tea, prevent early alcohol-induced liver injury, most likely by preventing oxidative stress.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号