首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Climate and landscape influence on indicators of lake carbon cycling through spatial patterns in dissolved organic carbon
Authors:Jean‐Francois Lapierre  David A Seekell  Paul A del Giorgio
Institution:1. Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada;2. Department of Fisheries and Wildlife, Michigan State University, MI, USA;3. Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA;4. Department of Ecology and Environmental Science, Ume? University, Ume?, Sweden
Abstract:Freshwater ecosystems are strongly influenced by both climate and the surrounding landscape, yet the specific pathways connecting climatic and landscape drivers to the functioning of lake ecosystems are poorly understood. Here, we hypothesize that the links that exist between spatial patterns in climate and landscape properties and the spatial variation in lake carbon (C) cycling at regional scales are at least partly mediated by the movement of terrestrial dissolved organic carbon (DOC) in the aquatic component of the landscape. We assembled a set of indicators of lake C cycling (bacterial respiration and production, chlorophyll a, production to respiration ratio, and partial pressure of CO2), DOC concentration and composition, and landscape and climate characteristics for 239 temperate and boreal lakes spanning large environmental and geographic gradients across seven regions. There were various degrees of spatial structure in climate and landscape features that were coherent with the regionally structured patterns observed in lake DOC and indicators of C cycling. These different regions aligned well, albeit nonlinearly along a mean annual temperature gradient; whereas there was a considerable statistical effect of climate and landscape properties on lake C cycling, the direct effect was small and the overall effect was almost entirely overlapping with that of DOC concentration and composition. Our results suggest that key climatic and landscape signals are conveyed to lakes in part via the movement of terrestrial DOC to lakes and that DOC acts both as a driver of lake C cycling and as a proxy for other external signals.
Keywords:aquatic carbon cycling  boreal  climate     CO   2     dissolved organic carbon  fluorescence  lake  landscape     PARAFAC     Respiration  spatial structure
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号