首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Environmental drivers interactively affect individual tree growth across temperate European forests
Authors:Sybryn L Maes  Michael P Perring  Margot Vanhellemont  Leen Depauw  Jan Van den Bulcke  Guntis Br melis  Jrg Brunet  Guillaume Decocq  Jan den Ouden  Werner Hrdtle  Radim Hdl  Thilo Heinken  Steffi Heinrichs  Bogdan Jaroszewicz  Martin Kopecký  Franti&#x;ek Mli&#x;  Monika Wulf  Kris Verheyen
Institution:Sybryn L. Maes,Michael P. Perring,Margot Vanhellemont,Leen Depauw,Jan Van den Bulcke,Guntis Brūmelis,Jörg Brunet,Guillaume Decocq,Jan den Ouden,Werner Härdtle,Radim Hédl,Thilo Heinken,Steffi Heinrichs,Bogdan Jaroszewicz,Martin Kopecký,Franti?ek Máli?,Monika Wulf,Kris Verheyen
Abstract:Forecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global‐change drivers such as climate change or atmospheric deposition, as well as to local land‐use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global‐change drivers are relatively scarce and rarely consider management effects. Here, we assessed the interactive effects of three global‐change drivers (temperature, precipitation and nitrogen deposition) on individual tree growth of three study species (Quercus robur/petraea, Fagus sylvatica and Fraxinus excelsior). We sampled trees along spatial environmental gradients across Europe and accounted for the effects of management for Quercus. We collected increment cores from 267 trees distributed over 151 plots in 19 forest regions and characterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. We demonstrate that growth responds interactively to global‐change drivers, with species‐specific sensitivities to the combined factors. Simultaneously high levels of precipitation and deposition benefited Fraxinus, but negatively affected Quercus’ growth, highlighting species‐specific interactive tree growth responses to combined drivers. For Fagus, a stronger growth response to higher temperatures was found when precipitation was also higher, illustrating the potential negative effects of drought stress under warming for this species. Furthermore, we show that past forest management can modulate the effects of changing temperatures on Quercus’ growth; individuals in plots with a coppicing history showed stronger growth responses to higher temperatures. Overall, our findings highlight how tree growth can be interactively determined by global‐change drivers, and how these growth responses might be modulated by past forest management. By showing future growth changes for scenarios of environmental change, we stress the importance of considering multiple drivers, including past management and their interactions, when predicting tree growth.
Keywords:basal area increment  climate change     Fagus        Fraxinus     historical ecology  nitrogen deposition     Quercus     tree‐ring analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号