首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biosynthesis of plant phenolic compounds in elevated atmospheric CO2
Authors:Susan E Hartley    Clive G Jones  †‡  Gordon C Couper‡  T Hefin Jones‡
Institution:Centre for Ecology and Hydrology, Banchory Research Station, Banchory, Aberdeenshire AB31 4BY, UK,;Institute of Ecosystem Studies, PO Box AB, Millbrook, NY 1245-0129, USA,;NERC Centre for Population Biology, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, UK
Abstract:Experiments were carried out to determine the effects of elevated atmospheric carbon dioxide (CO2) on phenolic biosynthesis in four plant species growing over three generations for nine months in a model plant community. Results were compared to those obtained when the same species were grown individually in pots in the same soils and controlled environment. In the model herbaceous plant community, only two of the four species showed any increase in biomass under elevated CO2, but this occurred only in the first generation for Spergula arvensis and in the second generation for Poa annua. Thus, the effects of CO2 on plant biomass and carbon and nitrogen content were species‐ and generation‐specific. The activity of the principle phenolic biosynthetic enzyme, phenylalanine ammonia lyase (PAL), increased under elevated CO2 in Senecio vulgaris only in Generation 1, but increased in three of the four plant species in Generation 2. There were no changes in the total phenolic content of the plants, except for P. annua in Generation 1. Lignin content decreased under elevated CO2 in Cardamine hirsuta in Generation 1, but increased in Generation 2, whilst the lignin content of P. annua showed no change, decreased, then increased in response to elevated CO2 over the three generations. When the species were grown alone in pots, elevated CO2 increased PAL activity in plants grown in soil taken from the Ecotron community after nine months of plant growth, but not in plants grown in the soil used at the start of the experiment (‘initial' soil). In P. annua, phenolic biosynthesis decreased under elevated CO2 in initial soil, and in both P. annua and S. vulgaris there was a significant interaction between effects of soil type and CO2 level on PAL activity. In this study, plant chemical composition altered more in response to environmental factors such as soil type than in response to carbon supply. Results were species‐specific and changed markedly between generations.
Keywords:C:N balance  Ecotron  global change  plant defence  secondary compounds  soil nutrients
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号