首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Amidohydrolase activity,soil N status,and the invasive crucifer Lepidium latifolium
Authors:Blank  R R
Institution:(1) USDA, ARS, Exotic and Invasive Weed Research Unit, 920 Valley Road, Reno, NV 89512, USA
Abstract:Wetlands and riparian habitats in the western United States are being invaded by the exotic crucifer Lepidium latifolium (perennial pepperweed, tall whitetop). It was hypothesized that L. latifolium was an effective competitor due to its ability to make available and take up more nitrogen than vegetation it is replacing. The hypothesis was tested by comparing amidohydrolase activities, available soil N, 30 day aerobic N-mineralization rates, and plant uptake of N in paired L. latifolium invaded and non-invaded plots occupied by Elytrigia elongata (tall wheatgrass). Attributes were measured by date (June 1998, September 1998, April 1999, and May 2000) and by soil depth (0–15, 15–30, 30–50, and 50–86 cm). Lepidium latifolium invaded sites had significantly (p le 0.05) greater urease, amidase, glutaminase, and asparaginase activities than sites occupied by E. elongata for most dates and soil depths. In addition, despite far greater uptake of N per unit area, L. latifolium sites still had significantly greater available N and N-mineralization potentials than E. elongata for most dates and depths. In general, enzyme activities significantly correlated with available soil N, with a stronger relationship for sites invaded by L. latifolium. There were few significant linear correlations of enzyme activities with net N mineralization potentials for L. latifolium sites, but many for sites occupied by E. elongata. These data support the working hypothesis.
Keywords:amidase  asparaginase  available N  Elytrigia elongata  glutaminase  Lepidium latifolium  N mineralization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号