首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spatial and temporal distribution of carbon isotopes in soil organic matter at the Dinghushan Biosphere Reserve, South China
Authors:Qingqiang Chen  Chengde Shen  Yanmin Sun  Shaolin Peng  Weixi Yi  Zhi’an Li  Mantao Jiang
Institution:(1) State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, Peoplersquos Republic of China;(2) Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, Peoplersquos Republic of China;(3) South China Institute of Botany, Chinese Academy of Sciences, Guangzhou, 510650, Peoplersquos Republic of China
Abstract:The spatial and temporal distribution of carbon isotopes (13C, 14C) in soil organic matter (SOM) were studied based on SOM content, SOM Delta14C and SOM delta13C of thinly layered soil samples for six soil profiles with different elevations at the Dinghushan Biosphere Reserve (DHSBR), South China. The results indicate that variations of SOM delta13C with depth of the soil profiles at different elevations are controlled by soil development, and correlate well with SOM composition in terms of SOM compartments with different turnover rates, and SOM turnover processes at the DHSBR. The effect of carbon isotope fractionation was obvious during transformation of organic matter (OM) from plant debris to SOM in topsoil and SOM turnover processes after the topsoil was buried, which resulted in great increments of OM delta13C, respectively. Increments of SOM delta13C of topsoil from delta13C of plant debris were controlled by SOM turnover rates. Both topsoil SOM delta13C and plant debris delta13C increase with elevation, indicating regular changes in vegetation species and composition with elevation, which is consistent with the vertical distribution of vegetation at the DHSBR. The six soil profiles at different elevations had similar characteristics in variations of SOM delta13C with depth, alterations of SOM contents with depth and that SOM 14C apparent ages increasing with depth, respectively. These are presumably attributed to the regular distribution of different SOM compartments with depth because of their regular turnover during soil development. Depth with the maximal SOM delta13C value is different in mechanism and magnitude with penetrating depth of 14C produced by nuclear explosion into atmosphere from 1952 to 1962, and both indicate controls of topography and vegetation on the distribution of SOM carbon isotopes with depth. Elevation exerts indirect controls on the spatial and temporal distribution of SOM carbon isotopes of the studied mountainous soil profiles at the DHSBR. This study shows that mountainous soil profiles at different elevations and with distinctive aboveground vegetation are presumably ideal sites for studies on soil carbon dynamics in different climatic-vegetation zones.
Keywords:carbon cycling  carbon isotope  Dinghushan Biosphere Reserve  soil organic matter  South China  subtropical zone
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号