首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments
Authors:Wenzel  Walter W  Unterbrunner  Reinhard  Sommer  Peter  Sacco  Pasqualina
Institution:(1) Institute of Soil Science, University of Agricultural Sciences Vienna (BOKU), Gregor Mendel Straße 33, A-1180 Vienna, Austria
Abstract:Phytoextraction is an emerging technology for non-destructive remediation of heavy metal-polluted soils. This study was conducted to test chelate-assisted phytoextraction of Cu, Pb and Zn using EDTA and canola (Brassica napus L. cv. Petranova) on a moderately polluted industrial soil (loamy sand) in the sub-continental climate of Eastern Austria. The effects of the rate (up to 2.1 g kg–1 soil) and mode (single versus split) of EDTA application on the biomass, water contents and metal concentrations in shoots and roots were investigated along with changes of metal lability in soil and leaching from the root zone in parallel outdoors pot and lysimeter experiments. Labile (1 M NH4NO3-extractable) metal concentrations in soil increased considerably upon application of EDTA, indicating enhanced phytoavailability. However, this was also associated with enormously increased metal concentrations in the leachates collected below the root zone. Enhanced metal labilities and leachate concentrations persisted for more than 1 year after harvest. Metal lability was more enhanced by EDTA in rhizosphere relative to bulk soil, indicating interactions of EDTA with root activities. Shoot biomass and water contents of canola were virtually unaffected by EDTA, revealing that canola can tolerate excessive metal concentrations in soil pore water. Metal concentrations in shoots were increased considerably, but were insufficient to obtain reasonable extraction rates. Split applications were generally more effective than the same amounts of EDTA added at once. Metal concentrations in roots decreased after each application of EDTA, possibly indicating metal removal from roots by free protonated EDTA, but increased again within several days. As the application of chelate-assisted phytoextraction is limited by the risk of groundwater pollution, further work should focus on natural, continuous phytoextraction technologies.
Keywords:Canola  EDTA  heavy metals  phytoextraction  rhizosphere
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号