首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Iron catalyzed conversion of NO into nitrosonium (NO+) and nitroxyl (HNO/NO-) species.
Authors:Srdjan Stojanovi?  Dragana Stani?  Milan Nikoli?  Mihailo Spasi?  Vesna Niketi?
Institution:Department of Chemistry, University of Belgrade, POBox 158, 11001 Belgrade, Serbia and Montenegro.
Abstract:The conversion of NO into its congeners, nitrosonium (NO+) and nitroxyl (HNO/NO-) species, has important consequences in NO metabolism. Dinitrosyl iron complex (DNIC) combined with thiol ligands was shown to catalyze the conversion of NO into NO+, resulting in the synthesis of S-nitrosothiols (RSNO) both in vitro and in vivo. The formation mechanism of DNIC was proposed to involve the intermediate release of nitroxyl. Since the detection of hydroxylamine (as the product of a rapid reaction of HNO/NO- with thiols) is taken as the evidence for nitroxyl generation, we examined the formation of hydroxylamine, RSNO, and nitrite (the product of a rapid reaction of NO+ with water) in neutral solutions containing iron ions and thiols exposed to NO under anaerobic conditions. Hydroxylamine was detected in NO treated solutions of iron ions in the presence of cysteine, but not glutathione (GSH). The addition of urate, a major "free" iron-binding agent in humans, to solutions of GSH and iron ions, and the subsequent treatment of these solutions with NO increased the synthesis of GSNO and resulted in the formation of hydroxylamine. This caused a loss of urate and yielded a novel nitrosative/nitration product. GSH attenuated the urate decomposition to such a degree that it could be reflected as the function of GSH:urate. Results described here contribute to the understanding of the role of iron ions in catalyzing the conversion of NO into HNO/NO- and point to the role of uric acid not previously described.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号