首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A role for cell cycle proteins in the serum-starvation resistance of Epstein-Barr virus immortalized B lymphocytes.
Authors:Hak-Ryul Kim  Ju-A h Jeong  Chan-Hee Park  Suk-Kyeong Lee  Won-Keun Lee  Yong-Suk Jang
Institution:Division of Biological Sciences, The Institute for Molecular Biology and Genetics, Chonbuk National University, Chonju, Korea.
Abstract:Epstein-Barr virus (EBV) is a B-lymphotropic human herpes virus that infects B lymphocytes and is associated with a broad spectrum of benign and malignant diseases. B cell infection by EBV causes indefinite cell proliferation that results in the development of immortalized lymphoblastoid cell lines (LCLs). We found that SNU-1103, a latency type III EBV-transformed LCL developed from a Korean cancer patient, resisted the G1 arrest that was normally caused by serum starvation. Western blot analyses revealed several alterations in the expression of key regulatory cell cycle proteins involved in the G1 phase. High expression of cyclin D2 and time-dependent increases in cyclin-dependent kinase 6 (CDK6) and cyclin D3 were observed in SNU-1103 during serum starvation. Very unexpectedly, in SNU-1103, the key G1 phase CDK inhibitor p21CiP1 was expressed at a consistently high level, while p27KiP1 expression was increased. Of three pRb family proteins, pRb expression was reduced and it became hypophosphorylated in SNU-1103 during serum starvation. Instead, p107 and p130 were expressed at consistently high levels in SNU-1103 during serum starvation. In conclusion, compared with an EBV-negative BJAB cell line, multiple cell cycle regulatory proteins were abnormally or inversely expressed in SNU-1103 during serum starvation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号