首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Growth, nutrition, and nitrogen fixation in grey alder at varied rate of nitrogen addition
Authors:TORSTEN INGESTAD
Institution:Swedish University of Agricultural Sciences, Section of Forest Ecophysiology, S-750 07 Uppsala, Sweden
Abstract:Seedlings of grey alder (Alnus incana Moench), nodulated or unnodulated, were investigated at varied relative addition rate of nitrogen. Nitrogen fixation alone, without addition of mineral nitrogen, resulted in an almost optimum nitrogen status but only about half the maximum relative growth rate, probably mainly because of energy costs of nodulation and fixation. The growth deficit due to nodulation was much more than can be explained by the theoretical energy requirement for the amount of nitrogen fixed. Thus, the nitrogen fixation process was not very efficiently used. The nitrogen fixation rate was strongly stimulated by increasing nitrogen addition rate up to high levels. The fixation rate decreased rapidly close to optimum (maximum relative growth rate) and was negligible at maximum growth. A feed-back of mineral nitrogen on photosynthesis increased fixation rate with time, and the relative importance of fixation over mineral nitrogen nutrition increased. However, nitrogen fixation, also at maximum rate, supplied only a small proportion of the nitrogen amount required for maximum growth. The optimum nutrient solutions contained comparatively high nitrogen concentrations to secure free access to nitrogen. The nodules were damaged by this treatment, and it is concluded that the nitrogen additions must be adjusted to the current consumption of the plants to avoid an increased external nitrogen concentration. Strong linear regressions were found between relative growth rate, nitrogen status expressed as percentage content of fresh weight, and relative growth rate in unnodulated seedlings. There was a greater variability in nodulated seedlings than in unnodulated ones, because of the nitrogen fixation. The reactions of unnodulated grey alder were largely the same as previously reported for birch seedlings, but the maximum growth capacity was lower in grey alder. During an initial period of change in the internal nitrogen status, deficiency symptoms appeared, especially in unnodulated seedlings. As in birch, the leaves turned green again at stable nitrogen status, independent of level. The results are in sharp contrast to data from the literature where the external nitrogen concentration was used as the driving variable for the internal nitrogen status. The measured fixation rates for grey alder are much higher than those previously reported. Still, the maximum fixation rate observed is small compared to the total nitrogen uptake rate required for maximum growth, in contrast to reported relationships. These comparisons indicate that increased external nitrogen concentration obscures the real relations between mineral and fixed nitrogen, on one hand because of rapid inhibition of nitrogen fixation and, on the other hand, because of failure to obtain stable optimum nutrition and maximum growth by means of this treatment variable.
Keywords:Nitrogen fixation  relative nitrogen addition rate  relative growth rate  nitrogen stress  nodulation  energy costs of fixation  grey alder
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号