首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Turgor-dependent unloading of assimilates from coats of developing legume seed. Assessment of the significance of the phenomenon in the whole plant
Authors:J W Patrick
Institution:Dept of Biological Sciences, The Univ. of Newcastle, Newcastle, NSW 2308, Australia
Abstract:The in vivo significance of turgor-dependent unloading was evaluated by examining assimilate transport to and within intact developing seeds of Phaseolus vulgaris (cv. Redland Pioneer) and Vicia faba (cv. Coles Prolific). The osmotic potentials of the seed apoplast were low. As a result, the osmotic gradients to the seed coat symplast were relatively small (i.e. 0.1 to 0.3 MPa). Sap concentrations of sucrose and potassium in the seed apoplast and coat symplast accounted for some 45 to 60% of the osmotic potentials of these compartments. Estimated turnover times of potassium and sucrose in the seed apoplast of < 1 h were some 5 to 13 times faster than the respective turnover times in the coat symplast pools. The small osmotic gradient between the seed apoplast and coat symplast combined with the relatively rapid turnover of solutes in the apoplast pool, confers the potential for a small change in assimilate uptake by the cotyledons to be rapidly translated into an amplified shift in the cell turgor of the seed coat. Observed adjustments in the osmotic potentials of solutions infused between the coat and cotyledons of intact seed were consistent with the in vivo operation of turgor-dependent unloading of solutes from the coat. Homeostatic regulation of turgor-dependent unloading was indicated by the maintenance of apoplast osmotic potentials of intact seeds when assimilate balance was manipulated by partial defoliation or elevating pod temperature. In contrast, osmotic potentials of the coat symplast adjusted upward to new steady values over a 2 to 4 h period. The resultant downward shift in coat cell turgor could serve to integrate phloem import into the seed coat with the new rates of efflux to the seed apoplast. Circumstantial evidence for this linkage was suggested by the approximate coincidence of the turgor changes with those in stem levels of 32P used to monitor phloem transport. The results obtained provide qualified support for the in vivo operation of a turgor homeostat mechanism. It is proposed that the homeostat functions to integrate assimilate demand by the cotyledons with efflux from and phloem import into the coats of developing legume seed.
Keywords:Assimilate efflux  broad bean  cotyledon  French bean              Phaseolus vulgaris            phloem import  seed coat  turgor-dependent unloading  turgor homeostat              Vicia faba
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号