首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanism of shortened action potential duration in Na+-Ca2+ exchanger knockout mice
Authors:Pott Christian  Ren Xiaoyan  Tran Diana X  Yang Ming-Jim  Henderson Scott  Jordan Maria C  Roos Kenneth P  Garfinkel Alan  Philipson Kenneth D  Goldhaber Joshua I
Institution:Cardiovascular Research Laboratory, MRL 3-645, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1760, USA.
Abstract:In cardiac-specific Na+-Ca2+ exchanger (NCX) knockout (KO) mice, the ventricular action potential (AP) is shortened. The shortening of the AP, as well as a decrease of the L-type Ca2+ current (ICa), provides a critical mechanism for the maintenance of Ca2+ homeostasis and contractility in the absence of NCX (Pott C, Philipson KD, Goldhaber JI. Excitation-contraction coupling in Na+-Ca2+ exchanger knockout mice: reduced transsarcolemmal Ca2+ flux. Circ Res 97: 1288–1295, 2005). To investigate the mechanism that underlies the accelerated AP repolarization, we recorded the transient outward current (Ito) in patch-clamped myocytes isolated from wild-type (WT) and NCX KO mice. Peak Ito was increased by 78% and decay kinetics were slowed in KO vs. WT. Consistent with increased Ito, ECGs from KO mice exhibited shortened QT intervals. Expression of the Ito-generating K+ channel subunit Kv4.2 and the K+ channel interacting protein was increased in KO. We used a computer model of the murine AP (Bondarenko VE, Szigeti GP, Bett GC, Kim SJ, and Rasmusson RL. Computer model of action potential of mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 287: 1378–1403, 2004) to determine the relative contributions of increased Ito, reduced ICa, and reduced NCX current (INCX) on the shape and kinetics of the AP. Reduction of ICa and elimination of INCX had relatively small effects on the duration of the AP in the computer model. In contrast, AP repolarization was substantially accelerated when Ito was increased in the computer model. Thus, the increase in Ito, and not the reduction of ICa or INCX, is likely to be the major mechanism of AP shortening in KO myocytes. The upregulation of Ito may comprise an important regulatory mechanism to limit Ca2+ influx via a reduction of AP duration, thus preventing Ca2+ overload in situations of reduced myocyte Ca2+ extrusion capacity. genetically altered mice; cardiac myocytes; short QT interval; transient outward current
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号