首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of ATM and the Damage Response Mediator Proteins 53BP1 and MDC1 in the Maintenance of G2/M Checkpoint Arrest
Authors:Atsushi Shibata  Olivia Barton  Angela T Noon  Kirsten Dahm  Dorothee Deckbar  Aaron A Goodarzi  Markus L?brich  Penny A Jeggo
Institution:Genome Damage and Stability Centre, University of Sussex, East Sussex BN1 9RQ, United Kingdom,1. Darmstadt University of Technology, Radiation Biology and DNA Repair, 64287 Darmstadt, Germany2.
Abstract:ATM-dependent initiation of the radiation-induced G2/M checkpoint arrest is well established. Recent results have shown that the majority of DNA double-strand breaks (DSBs) in G2 phase are repaired by DNA nonhomologous end joining (NHEJ), while ∼15% of DSBs are slowly repaired by homologous recombination. Here, we evaluate how the G2/M checkpoint is maintained in irradiated G2 cells, in light of our current understanding of G2 phase DSB repair. We show that ATM-dependent resection at a subset of DSBs leads to ATR-dependent Chk1 activation. ATR-Seckel syndrome cells, which fail to efficiently activate Chk1, and small interfering RNA (siRNA) Chk1-treated cells show premature mitotic entry. Thus, Chk1 significantly contributes to maintaining checkpoint arrest. Second, sustained ATM signaling to Chk2 contributes, particularly when NHEJ is impaired by XLF deficiency. We also show that cells lacking the mediator proteins 53BP1 and MDC1 initially arrest following radiation doses greater than 3 Gy but are subsequently released prematurely. Thus, 53BP1−/− and MDC1−/− cells manifest a checkpoint defect at high doses. This failure to maintain arrest is due to diminished Chk1 activation and a decreased ability to sustain ATM-Chk2 signaling. The combined repair and checkpoint defects conferred by 53BP1 and MDC1 deficiency act synergistically to enhance chromosome breakage.DNA double-strand breaks (DSBs) activate the DNA damage response (DDR), a coordinated process that functions to enhance survival and maintain genomic stability. The DDR includes pathways of DSB repair and a signal transduction response that activates apoptosis and cell cycle checkpoint arrest and influences DSB repair (15). DNA nonhomologous end joining (NHEJ) and homologous recombination (HR) represent the major DSB repair mechanisms, NHEJ being the major mechanism in G0/G1, while both processes function in G2 (9, 32). Ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) are related phosphoinositol 3-kinase-like kinases (PIKKs) that regulate the DNA damage signaling response. ATM is activated by DSBs, while ATR is activated at single-strand (ss) regions of DNA via a process that involves ATRIP-replication protein A (RPA)-ssDNA association. Ionizing radiation (IR) induces DSBs, base damage, and ss nicks. Since neither base damage nor ss nicks activate ATR, IR-induced signaling in the G1 and G2 phases is predominantly ATM dependent (3, 29). In S phase, ATR can be activated by both endogenous and exogenously induced lesions following replication fork stalling/collapse (8).Recent work has shown that in G2 phase, DSBs can undergo resection via an ATM-dependent process generating ssDNA regions that can activate ATR following RPA association (11). ATR activation at resected DSBs is coupled to loss of ATM activation (11). Although ATM and ATR share overlapping substrates, there is specificity in their signaling to the transducer kinases; ATM uniquely phosphorylates Chk2, while ATR phosphorylates Chk1. Phosphorylation of either Chk1 or Chk2 causes their activation. Critical targets of Chk1/Chk2 are the Cdc25 phosphatases, which regulate the cyclin-dependent kinases (Cdks), including Cdk1, the regulator of mitotic entry (18). Collectively, these studies suggest that two components of ATM-dependent signaling to the G2/M checkpoint machinery can occur: ATM-Chk2 signaling at unresected DSBs and ATM-ATR-Chk1 signaling at resected DSBs.Although much is known about the mechanism leading to G2/M checkpoint activation, few studies have addressed how arrest is maintained and how release coordinates with the status of DSB repair. We examine here the maintenance of checkpoint arrest during the immediate phase of DSB repair. We do not address the issue of checkpoint adaptation, a distinct phenomenon which occurs after prolonged checkpoint arrest (22). Further, we focus on the process maintaining arrest in irradiated G2-phase cells and do not consider how arrest is maintained in irradiated S-phase cells that progress into G2 phase. (Previous studies have shown that while G2/M arrest is ATM dependent at early times post-IR, at later times it becomes ATR dependent as S-phase cells progress into G2 phase 2, 33].) To focus on mechanisms maintaining ATM-dependent signaling in G2-phase cells, we use aphidicolin (APH) to prevent S-phase cells from progressing into G2 during analysis. We, thus, examine checkpoint maintenance in cells irradiated in G2 phase and do not evaluate arrest regulated by ATR following replication fork stalling. The basis for our work stems from two recent advances. First, we evaluate the impact of ATM-mediated ATR activation in the light of recent findings that resection occurs in G2 phase (11). Second, we consider the finding that NHEJ represents the major DSB repair mechanism in G2 and that a 15 to 20% subset of DSBs, representing those that are rejoined with slow kinetics in an ATM-dependent manner, undergo resection and repair by HR (3, 25). Thus, contrary to the notion that HR represents the major DSB repair pathway in G2 phase, it repairs only 15 to 20% of X- or gamma-ray-induced DSBs and represents the slow component of DSB repair in G2 phase. Given these findings, several potential models for how checkpoint arrest is maintained in G2 can be envisaged. A simple model is that the initial signal generated by IR is maintained for a defined time to allow for DSB repair. Such a model appears to explain the kinetics of checkpoint signaling in fission yeast after moderate IR (17). In mammalian cells, the duration of arrest depends on dose and DSB repair capacity (6). Thus, it is possible that the status of ongoing repair is communicated to the checkpoint machinery to coordinate timely release with the process of DSB repair. Here, we consider the impact of resection leading to ATM-ATR-Chk1 signaling versus ATM-Chk2 signaling from nonresected DSBs and how they interplay to maintain rather than initiate checkpoint arrest.Mediator proteins, including 53BP1 and MDC1, assemble at DSBs in an ATM-dependent manner, but their roles in the DDR are unclear. Cells lacking 53BP1 or MDC1 are proficient in checkpoint initiation after moderate IR doses, leading to the suggestion that these proteins are required for amplification of the ATM signal after exposure to low doses but are dispensable after high doses, when a robust signal is generated, even in their absence (7, 16, 28, 31). Despite their apparent subtle role in ATM signaling, cells lacking these mediator proteins display significant genomic instability (19). We thus also examine whether the mediator proteins contribute to the maintenance of checkpoint arrest.We identify two ATM-dependent processes that contribute to the maintenance of checkpoint arrest in G2-phase cells: (i) ATR-Chk1 activation at resected DSBs and (ii) a process that involves sustained signaling from ATM to Chk2 at unrepaired DSBs. Further, we show that 53BP1 and MDC1 are required for maintaining checkpoint arrest, even following exposure to high radiation doses due to roles in ATR-Chk1 activation and sustained ATM-Chk2 signaling, and that this contributes to their elevated genomic instability.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号