首页 | 本学科首页   官方微博 | 高级检索  
   检索      

阻断消耗途径提高毕赤酵母工程菌S-腺苷甲硫氨酸产量
引用本文:苏慧颖,蒙世拯,赵欣欣,钱江潮,储炬,秦秀林.阻断消耗途径提高毕赤酵母工程菌S-腺苷甲硫氨酸产量[J].微生物学通报,2023,50(2):441-453.
作者姓名:苏慧颖  蒙世拯  赵欣欣  钱江潮  储炬  秦秀林
作者单位:广西大学生命科学与技术学院 亚热带农业生物资源保护与利用国家重点实验室 广西微生物与酶工程技术研究中心, 广西 南宁 530004;华东理工大学 生物反应器工程国家重点实验室, 上海 200237
基金项目:国家自然科学基金(31300076);广西壮族自治区自然科学基金(2019GXNSFAA245001,2018GXNSFAA281005,2017GXNSFAA198136)
摘    要:【背景】S-腺苷甲硫氨酸(S-adenosyl-L-methionine, SAM)作为所有生物体内的重要中间代谢物,不仅可作为膳食补充剂,还具有良好的临床应用价值。【目的】将毕赤酵母重组菌GS115/DS16的SAM消耗途径阻断,进一步提高SAM的产量。【方法】分别敲除毕赤酵母重组菌GS115/DS16的S-腺苷同型半胱氨酸水解酶基因sah1、S-腺苷甲硫氨酸脱羧酶基因spe2和L-甲硫氨酰tRNA合酶基因msm1,构建工程菌G/Dsah、G/Dspe和G/Dmsm。检测3个工程菌的生长和SAM产量,以及L-Met添加量对SAM积累的影响。【结果】与出发菌GS115/DS16相比,工程菌G/Dsah、G/Dspe和G/Dmsm的单位菌体SAM产量分别提高了29.3%、55.6%和24.8%,其生长无显著差异。L-Met添加量优化后(0.06%),G/Dsah和G/Dmsm单位菌体的SAM产量分别提高了26.4%和28.9%。【结论】构建的毕赤酵母工程菌可用于SAM的工业化生产,该代谢工程策略可用于改进其他化学品的生产。

关 键 词:S-腺苷甲硫氨酸  毕赤酵母  S-腺苷甲硫氨酸脱羧酶  S-腺苷同型半胱氨酸水解酶  L-甲硫氨酰tRNA合酶
收稿时间:2022/5/15 0:00:00

Blocking consumption pathway increases production of S-adenosyl-l-methionine by Pichia pastoris
SU Huiying,MENG Shizheng,ZHAO Xinxin,QIAN Jiangchao,CHU Ju,QIN Xiulin.Blocking consumption pathway increases production of S-adenosyl-l-methionine by Pichia pastoris[J].Microbiology,2023,50(2):441-453.
Authors:SU Huiying  MENG Shizheng  ZHAO Xinxin  QIAN Jiangchao  CHU Ju  QIN Xiulin
Institution:State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China;State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
Abstract:Background] S-Adenosyl-l-methionine (SAM) is an important intracellular metabolite that can be used as a dietary supplement and to treat a variety of diseases. Objective] To enhance SAM production for industrial application by blocking SAM consumption pathways in the recombinant Pichia pastoris strain GS115/DS16. Methods] The genes associated with the metabolism of SAM, sah1 (encoding S-adenosyl-l-homocysteine hydrolase), spe2 (encoding S-adenosylmethionine decarboxylase), and msm1 (encoding mitochondrial methylthio-tRNA synthase), were knocked out in SAM-producing strain GS115/DS16. Accordingly, the engineered strains G/Dsah, G/Dspe, and G/Dmsm were constructed. The cell growth and SAM production of the three engineered strains were investigated. Additionally, the effect of methionine addition on SAM accumulation was studied. Results] The knock-out did not affect cell growth, whereas it increased SAM production by 29.3%, 55.6%, and 24.8% in G/Dsah, G/Dspe, and G/Dmsm, respectively, compared with the parental strain GS115/DS16. When l-Met addition was decreased from 0.10% to 0.06%, the SAM production increased by 26.4% and 28.9% in G/Dsah and G/Dmsm, respectively. Conclusion] Therefore, the engineered P. pastoris strains can be utilized in industrial production of SAM in a cost-effective manner, and the strategy can also be employed for improving the production of other chemicals.
Keywords:S-adenosyl-l-methionine  Pichia pastoris  S-adenosylmethionine decarboxylase  S-adenosyl-l-homocysteine hydrolase  mitochondrial methionyl-tRNA synthetase
点击此处可从《微生物学通报》浏览原始摘要信息
点击此处可从《微生物学通报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号