首页 | 本学科首页   官方微博 | 高级检索  
   检索      

响应面分析法优化耐高温假黄色单胞菌硫氧化性能
引用本文:顾文杰,赵冬梅,卢钰升,徐培智,解开治,李夏,孙丽丽.响应面分析法优化耐高温假黄色单胞菌硫氧化性能[J].微生物学通报,2017,44(4):991-998.
作者姓名:顾文杰  赵冬梅  卢钰升  徐培智  解开治  李夏  孙丽丽
作者单位:农业部南方植物营养与肥料重点实验室 广东省养分资源循环利用与耕地保育重点实验室 广东省农业科学院农业资源与环境研究所 广东 广州 510640,农业部南方植物营养与肥料重点实验室 广东省养分资源循环利用与耕地保育重点实验室 广东省农业科学院农业资源与环境研究所 广东 广州 510640,农业部南方植物营养与肥料重点实验室 广东省养分资源循环利用与耕地保育重点实验室 广东省农业科学院农业资源与环境研究所 广东 广州 510640,农业部南方植物营养与肥料重点实验室 广东省养分资源循环利用与耕地保育重点实验室 广东省农业科学院农业资源与环境研究所 广东 广州 510640,农业部南方植物营养与肥料重点实验室 广东省养分资源循环利用与耕地保育重点实验室 广东省农业科学院农业资源与环境研究所 广东 广州 510640,农业部南方植物营养与肥料重点实验室 广东省养分资源循环利用与耕地保育重点实验室 广东省农业科学院农业资源与环境研究所 广东 广州 510640,农业部南方植物营养与肥料重点实验室 广东省养分资源循环利用与耕地保育重点实验室 广东省农业科学院农业资源与环境研究所 广东 广州 510640
基金项目:国家自然科学基金项目(No. 31400434);广东省科技计划项目(No. 2015B020237007,2014B090904068);广东省新型肥料科技创新与服务平台建设
摘    要:【目的】采用响应面分析法对耐高温假黄色单胞菌的硫氧化性能进行优化。【方法】利用Plackett-Burman试验筛选影响菌株硫氧化性能的关键因子。通过最陡爬坡试验逼近最佳值区域,确定响应面试验中心轴,利用Box-Behnken设计和响应面分析法获得关键因素的最佳浓度。采用经典的改良硫酸钡比浊法测定硫酸根含量。【结果】牛肉膏、麦芽糖、镁离子(Mg~(2+))3个因素是影响菌株硫氧化性能的关键因素。响应面分析表明牛肉膏和镁离子的交互作用对硫酸根转化率的影响最大,优化后的结果为:麦芽糖(%)=0.07,牛肉膏(%)=0.11,Mg~(2+)(%)=0.04时,模型有最大值。模型的F值为52.60(P0.000 1),相关系数R2=0.980 2,说明该二次方程是显著的,该模型在整个回归区域内的拟合较好。经模拟堆肥试验验证该菌株可以有效增加堆肥中硫酸根含量。【结论】该模型可用于分析和预测耐高温假黄色单胞菌优化培养基配方,经优化后该菌株硫氧化性能大幅提升,硫酸根转化率由36.89%提高到80%以上,加入堆肥后与基础发酵条件下菌液相比更加有效增加了堆肥中SO_4~(2-)的含量,具有较好的应用前景。

关 键 词:耐高温,假黄色单胞菌,硫酸根转化率,响应面分析法

Optimization of oxidation by a thermotolerant Pseudoxanthomonas through response surface methodology
GU Wen-Jie,ZHAO Dong-Mei,LU Yu-Sheng,XU Pei-Zhi,JIE Kai-Zhi,LI Xia and SUN Li-Li.Optimization of oxidation by a thermotolerant Pseudoxanthomonas through response surface methodology[J].Microbiology,2017,44(4):991-998.
Authors:GU Wen-Jie  ZHAO Dong-Mei  LU Yu-Sheng  XU Pei-Zhi  JIE Kai-Zhi  LI Xia and SUN Li-Li
Institution:Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China,Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China,Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China,Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China,Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China,Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China and Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
Abstract:Objective] The response surface methodology was used to optimize thermotolerant Pseudoxanthomonas oxidation effect. Methods] We use Plackett-Burman method to select key factors for the sulfur oxidation. The steepest ascent method has been used to determine the optimal range of values and confirm the central axis. Box-Behnken experimental design was used to confirm the optimal concentration of the key factors. The concentration of sulfur was determined by classic barium sulfate turbidity method. Results] Beef extract, malt sugar and Mg2+ were the key factors affecting the sulfur oxidation performance. The results of the response surface methodology showed that the interaction effect between beef extract and Mg2+ had the most effects on sulfate conversion rate. The optimization results were: malt sugar (%)=0.07, beef extract (%)=0.11, Mg2+=0.04, the sulfate conversion rate reached peak value. The F-value of the model was 52.60 (P<0.000 1) and correlation coefficient (R2)=0.980 2 which indicated the model terms were significant and showed good degree of fitting. The simulation composting experiments results showed that the concentration of sulfate in compost increased with Pseudoxanthomonas addition. Conclusion] This model could be used to analyze and calculate the optimal formula of thermotolerant Pseudoxanthomonas culture medium. The sulfur conversion rate increased from 36.89% to over 80% after optimization. Addition of Pseudoxanthomonas in compost could increase sulfate concentration, compared with the suspension culture under basic fermentation conditions, which was of good application prospects.
Keywords:High temperature resistant  Pseudoxanthomonas  Sulfur conversion rate  Response surface methodology
本文献已被 CNKI 等数据库收录!
点击此处可从《微生物学通报》浏览原始摘要信息
点击此处可从《微生物学通报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号