首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Organic matter and nutrient dynamics of the forest and forest floor in the Hubbard Brook forest
Authors:James R Gosz  Gene E Likens  F Herbert Bormann
Institution:(1) Department of Biology, University of New Mexico, Albuquerque, New Mexico;(2) Section of Ecology and Systematics, Cornell University Ithaca, New York;(3) School of Forestry, Yale University, New Haven, Connecticut
Abstract:Summary The forest floor is a major reservoir of organic matter and nutrients for the ecosystem and as such it influences or regulates most of the functional processes occurring throughout the ecosystem. This study reports on the nutrient and organic matter content of the forest floor of the Hubbard Brook Experimental Forest during different seasons and attempts to correlate results from studies of vegetation, litter, decomposition, stemflow, throughfall, and soil. An organic matter budget is presented for an undisturbed watershed.Average weight of the forest floor on an undisturbed watershed ranged from 25,500 to 85,500 kg/ha. The weighted watershed average was 46,800 kg/ha. Although the F and H horizons did not vary significantly with time, the L horizon increased significantly during the period June to August largely as a result of a severe hail storm. The order of abundance of elements in the forest floor was Ntau;CaglFe>S>P>Mn>K>Mg>Na>Zn>Cu. The concentrations of Ca, K, and Mn decreased with depth in the forest floor while N, P, S, Na, Fe, Zn, and Cu concentrations increased. N:P ratios were similar in decomposing leaf tissue, the forest floor, litterfall, and net stemflow plus throughfall suggesting a similar pattern of cycling. S was proportional to N and P in decomposing leaf tissue, the forest floor, and litterfall. Net stemflow and throughfall were affected by a relatively large input of SO4=-S from the atmosphere. Residence times for elements in the forest floor were affected by inputs other than litterfall (precipitation, stemflow, and throughfall). Calculation of residence times using all inputs caused smaller values than if litterfall alone was used. While all residence times were reduced, the major differences occurred for K, S, and Na. N and P showed relatively long residence times as a result of retranslocation and immobilization by decomposers. The slow turnover rate because of the strong demand and retention by all biota must account for the efficiency of the intrasystem cycling process for N and P. K showed the shortest residence time. A rapid and efficient uptake of K by vegetation seems to account for the efficient cycling of this element. The patterns of nutrient cycling are several depending on the chemical properties of the forest floor, and nutritional requirements of the biota.This is contribution No. 67 of the Hubbard Brook Ecosystem Study. Financial support was provided by the National Science Foundation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号