首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Expression, purification, and characterization of recombinant S-adenosylhomocysteine hydrolase from the thermophilic archaeon Sulfolobus solfataricus
Authors:Porcelli M  Fusco S  Inizio T  Zappia V  Cacciapuoti G
Institution:Istituto di Biochimica delle Macromolecole, Facoltà di Medicina e Chirurgia, Seconda Università degli Studi di Napoli, Via Costantinopoli 16, Naples, 80138, Italy.
Abstract:S-Adenosylhomocysteine hydrolase from Sulfolobus solfataricus was expressed in Escherichia coli by inserting the genomic fragment containing the gene encoding for S-adenosylhomocysteine hydrolase downstream the isopropyl-beta-d-thiogalactoside-inducible promoter of pTrc99A expression vector. An ATG positioned 25 bp upstream of the gene which is in frame with a stop codon was utilized as the initiation codon. This construct was used to transform E. coli RB791 and E. coli JM105 strains. The recombinant protein, purified by a fast and efficient two-step procedure (yield of 0.4 mg of enzyme per gram of cells), does not appear homogeneous on SDS-PAGE because of the presence of a protein contaminant corresponding to a "truncated" S-adenosylhomocysteine hydrolase subunit lacking the first 24 amino acid residues. The recombinant enzyme shows the same molecular mass, optimum temperature, and kinetic features of S-adenosylhomocysteine hydrolase isolated from S. solfataricus but it is less thermostable. To construct a vector which presents a correct distance between the ribosome-binding site and the start codon of S-adenosylhomocysteine hydrolase gene, a NcoI site was created at the translation initiation codon using site-directed mutagenesis. The expression of the homogeneous mutant S-adenosylhomocysteine hydrolase was achieved at high level (1.7 mg of mutant protein per gram of cells). The mutant S-adenosylhomocysteine hydrolase and the native one were indistinguishable in all physicochemical and kinetic properties including thermostability, indicating that the interactions involving the NH(2)-terminal sequence of the protein play a role in the thermal stability of S. solfataricus S-adenosylhomocysteine hydrolase.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号