首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Estimation of canopy average mesophyll conductance using δ(13) C of phloem contents
Authors:Ubierna Nerea  Marshall John D
Institution:Department of Forest Resources, University of Idaho, Moscow, ID 83844-1133, USA. nerea.ubiernalopez@vandals.uidaho.edu
Abstract:Conductance to CO(2) inside leaves, known as mesophyll conductance (g(m)), imposes large limitations on photosynthesis. Because g(m) is difficult to quantify, it is often neglected in calculations of (13)C photosynthetic discrimination. The 'soluble sugar method' estimates g(m) via differences between observed photosynthetic discrimination, calculated from the δ(13)C of soluble sugars, and discrimination when g(m) is infinite. We expand upon this approach and calculate a photosynthesis-weighted average for canopy mesophyll conductance ((c) g(m)) using δ(13)C of stem phloem contents. We measured gas exchange at three canopy positions and collected stem phloem contents in mature trees of three conifer species (Pseudotsuga menziesii, Thuja plicata and Larix occidentalis). We generated species-specific and seasonally variable estimates of (c)g(m) . We found that (c)g(m) was significantly different among species (0.41, 0.22 and 0.09 mol m(-2) s(-1) for Larix, Pseudotsuga and Thuja, respectively), but was similar throughout the season. Ignoring respiratory and photorespiratory fractionations ((c)Δ(ef)) resulted in ≈30% underestimation of (c)g(m) in Larix and Pseudotsuga, but was innocuous in Thuja. Substantial errors (~1-4‰) in photosynthetic discrimination calculations were introduced by neglecting (c)g(m) and (c)Δ(ef) . Our method is easy to apply and cost-effective, captures species variation and would have captured seasonal variation had it existed. The method provides an average canopy value, which makes it suitable for parameterization of canopy-scale models of photosynthesis, even in tall trees.
Keywords:carbon dioxide  carbon isotopes  conifers  discrimination  internal conductance  photosynthesis  soluble sugars  transfer conductance
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号