首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Measurements of electrical leaf surface conductance reveal re-condensation of transpired water vapour on leaf surfaces
Authors:J BURKHARDT  H KAISER  H GOLDBACH  & LUDGER KAPPEN
Institution:Agrikulturchemisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 176, D-53115 Bonn, Germany and,;Botanisches Institut, Christian-Albrechts-Universität Kiel, Olshausenstr. 40–60, D-24098 Kiel, Germany
Abstract:Electrical conductance ( λ ) was measured continuously and in vivo on leaf surfaces of Vicia faba and Aegopodium podagraria . λ increased with rise and decreased with fall in humidity, exhibiting a hysteresis during an applied humidity cycle 90–20–-90% relative humidity (r.h.)]. After treatment with NaNO3 aerosols, a sudden increase in λ was observed at 73% r.h., which is close to the deliquescence point of the salt. Transpiration and electrical conductance of untreated leaves were measured simultaneously under conditions of constant r.h., while the photosynthetic photon flux density and CO2 concentration of the air were varied to induce changes of stomatal aperture. At 35% r.h., changes of light and CO2 level revealed a strong correlation between stomatal conductance ( g S) and λ for Vicia faba leaves. This was also found at 90, 75, 60, 45 and 25% r.h. on the lower but not on the astomatous, upper surface of Aegopodium podagraria . The correlation between g S and λ for stomata-bearing leaf surfaces indicates that an equilibrium exists between the ambient water vapour phase and the liquid water phase on and within the cuticle. This is modified by transpired water vapour influencing the air humidity inside the boundary layer. Our results imply re-condensation of transpired water vapour to salts on the leaf surface and its sorption to the cuticle.
Keywords:Aegopodium podagraria                        Vicia faba            condensation  cuticle  leaf boundary layer  phyllosphere  stomata  stomatal conductance  transpiration  water films  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号