首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transgenic GFP as a molecular marker for approaches to quantify pollination mechanism and gene flow in Arabidopsis thaliana
Authors:Tan Y-Y  Xu H-H  Tao W-J  Hoffmann M H  Wang X-F  Lu Y-T
Institution:Key Laboratory of MOE for Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, P.R. China.
Abstract:Arabidopsis thaliana is commonly regarded as a self-pollinated plant. We observed that the stigma in each flower of A. thaliana cannot be pollinated by its own pollen in the early phases of the flowering process, when the anthers had dehisced but the filaments were still too short for the pollen to be deposited on the stigma. In the later stages, after elongation of the filaments, self-pollination can occur. After artificial pollination of the flower of a wild plant with GFP transgenic pollen grains in earlier stages of flowering, GFP expressed within epidermal cells was detected in some of the offspring (26.1-57.1 %). Wind-mediated pollen dispersal was poor but is likely to exist in natural habitats, while insects were observed visiting flowers of A. thaliana in natural and experimental populations. We constructed an experimental population consisting of 28 GFP transgenic plants and 240 wild plants and examined gene flow in the population. The result was that the distance of gene flow was limited to 0.5 m. 22 offspring with expressed GFP were found in 28,299 filial individuals examined, which suggested a relatively low outcrossing rate (0.74%). We conclude that outcrossing in populations of A. thaliana is mainly due to insect pollination. The data on gene flow could be useful to assess the ecological hazards of experimental transgene combinations.
Keywords:Pollination mechanism  green fluorescent protein (GFP)  gene flow  outcrossing rate              Arabidopsis thaliana  
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号