首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Exploring novel objective functions for simulating muscle coactivation in the neck
Institution:1. The CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology (SIAT), and Guangdong-Hong Kong-Macau Joint Laboratory of Human-Machine Intelligence-Synergy Systems, SIAT, Chinese Academy of Sciences, Shenzhen 518055, China;2. The SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518055, China;3. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract:Musculoskeletal modeling allows for analysis of individual muscles in various situations. However, current techniques to realistically simulate muscle response when significant amounts of intentional coactivation is required are inadequate. This would include stiffening the neck or spine through muscle coactivation in preparation for perturbations or impacts. Muscle coactivation has been modeled previously in the neck and spine using optimization techniques that seek to maximize the joint stiffness by maximizing total muscle activation or muscle force. These approaches have not sought to replicate human response, but rather to explore the possible effects of active muscle. Coactivation remains a challenging feature to include in musculoskeletal models, and may be improved by extracting optimization objective functions from experimental data. However, the components of such an objective function must be known before fitting to experimental data. This study explores the effect of components in several objective functions, in order to recommend components to be used for fitting to experimental data. Four novel approaches to modeling coactivation through optimization techniques are presented, two of which produce greater levels of stiffness than previous techniques. Simulations were performed using OpenSim and MATLAB cooperatively. Results show that maximizing the moment generated by a particular muscle appears analogous to maximizing joint stiffness. The approach of optimizing for maximum moment generated by individual muscles may be a good candidate for developing objective functions that accurately simulate muscle coactivation in complex joints. This new approach will be the focus of future studies with human subjects.
Keywords:Muscle coactivation  Optimization techniques  OpenSim  Muscle control  Musculoskeletal modeling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号