首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Development of a surrogate model based on patient weight,bone mass and geometry to predict femoral neck strains and fracture loads
Institution:1. Department of Orthopaedic surgery, Stavanger University Hospital, Stavanger, Norway;2. Orthopaedic Research Centre, Trondheim University Hospital, Trondheim, Norway;3. Faculty of Medicine and Dentistry, Biomaterials, University of Bergen, Norway;1. Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada;2. Department of Radiology, University of Manitoba, Winnipeg, Manitoba, Canada;3. Department of Mechanical Engineering, University of Manitoba, Winnipeg, Manitoba, Canada;4. Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China;5. Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada;6. Department of Biomedical Engineering, Polytech Marseille, Marseille, France;1. Laboratorio di Bioingegneria Computazionale, Istituto Ortopedico Rizzoli, Italy;2. Dipartimento di Ingegneria Civile, Università di Roma Tor Vergata, Italy;3. Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Italy;4. Department of Mechanical Engineering, University of Sheffield, UK;5. Radiologia diagnostica ed interventistica, Istituto Ortopedico Rizzoli, Italy;6. Clinica Ortopedica, Università di Parma, Italy;7. Ortopedia Programmata, Ospedale di Faenza, Italy;8. Ortopedia-Traumatologia e Chirurgia protesica e dei reimpianti d''anca e di ginocchio, Istituto Ortopedico Rizzoli, Italy;9. Insigneo Institute for In Silico Medicine, University of Sheffield, UK
Abstract:Osteoporosis and related bone fractures are an increasing global burden in our ageing society. Areal bone mineral density assessed through dual energy X-ray absorptiometry (DEXA), the clinically accepted and most used method, is not sufficient to assess fracture risk individually. Finite element (FE) modelling has shown improvements in prediction of fracture risk, better than aBMD from DEXA, but is not practical for widespread clinical use. The aim of this study was to develop an adaptive neural network (ANN)-based surrogate model to predict femoral neck strains and fracture loads obtained from a previously developed population-based FE model. The surrogate model performance was assessed in simulating two loading conditions: the stance phase of gait and a fall.The surrogate model successfully predicted strains estimated by FE (r2 = 0.90–0.98 for level gait load case, r2 = 0.92–0.96 for the fall load case). Moreover, an ANN model based on three measurements obtainable in clinics (femoral neck length (level gait) or maximum femoral neck diameter (fall), femoral neck bone mass, body weight) was able to give reasonable predictions (r2 = 0.84–0.94) for all of the strain metrics and the estimated femoral neck fracture load. Overall, the surrogate model has potential for clinical applications as they are based on simple measures of geometry and bone mass which can be derived from DEXA images, accurately predicting FE model outcomes, with advantages over FE models as they are quicker and easier to perform.
Keywords:Femoral neck fracture  Finite element  Surrogate modelling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号