首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Microdamage assessment of bone-cement interfaces under monotonic and cyclic compression
Authors:Gianluca Tozzi  Qing-Hang ZhangJie Tong
Institution:Mechanical Behaviour of Materials Laboratory, School of Engineering, University of Portsmouth, UK
Abstract:Bone-cement interface has been investigated under selected loading conditions, utilising experimental techniques such as in situ mechanical testing and digital image correlation (DIC). However, the role of bone type in the overall load transfer and mechanical behaviour of the bone-cement construct is yet to be fully quantified. Moreover, microdamage accumulation at the interface and in the cement mantle has only been assessed on the exterior surfaces of the samples, where no volumetric information could be obtained. In this study, some typical bone-cement interfaces, representative of different fixation scenarios for both hip and knee replacements, were constructed using mainly trabecular bone, a mixture of trabecular and cortical bone and mainly cortical bone, and tested under static and cyclic compression. Axial displacement and strain fields were obtained by means of digital volume correlation (DVC) and microdamage due to static compression was assessed using DVC and finite element (FE) analysis, where yielded volumes and strains (εzz) were evaluated. A significantly higher load was transferred into the cement region when mainly cortical bone was used to interdigitate with the cement, compared with the other two cases. In the former, progressive damage accumulation under cyclic loading was observed within both the bone-cement interdigitated and the cement regions, as evidenced by the initiation of microcracks associated with high residual strains (εzz_res).
Keywords:Bone-cement interface  In situ mechanical testing  µ  CT  Microdamage  Digital volume correlation  Finite element analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号