首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of flooding and drought on stomatal activity, transpiration, photosynthesis, water potential and water channel activity in strawberry stolons and leaves
Authors:Michael M Blanke  David T Cooke
Institution:(1) Obstversuchsanlage Klein-Altendorf, Institut für Obstbau und Gemüsebau der Universität Bonn, Meckenheimer Str. 42, D-53359 Rheinbach, Germany;(2) School of Biological Sciences, University of Bristol, Bristol, UK
Abstract:Transpiration, xylem water potential and water channel activity were studied in developing stolons and leaves of strawberry (Fragaria × ananassa Duch.) subjected to drought or flooding, together with morphological studies of their stomata and other surface structures. Stolons had 0.12 stomata mm–2 and a transpiration rate of 0.6 mmol H2O m–2 s–1, while the leaves had 300 stomata mm–2 and a transpiration rate of 5.6 mmol H2O m–2 s–1. Midday water potentials of stolons were always less negative than in leaves enabling nutrient ion and water transport via or to the strawberry stolons. Drought stress, but not flooding, decreased stolon and leaf water potential from –0.7 to –1 MPa and from –1 to –2 MPa, respectively, with a concomitant reduction in stomatal conductance from 75 to 30 mmol H2O m–2 s–1. However, leaf water potentials remained unchanged after flooding. Similarly, membrane vesicles derived from stolons of flooded strawberry plants showed no change in water channel activity. In these stolons, turgor may be preserved by maintaining root pressure, an electrochemical and ion gradient and xylem differentiation, assuming water channels remain open. By contrast, water channel activity was reduced in stolons of drought stressed strawberry plants. In every case, the effect of flooding on water relations of strawberry stolons and leaves was less pronounced than that of drought which cannot be explained by increased ABA. Stomatal closure under drought could be attributed to increased delivery of ABA from roots to the leaves. However, stomata closed more rapidly in leaves of flooded strawberry despite ABA delivery from the roots in the xylem to the leaves being strongly depressed. This stomatal closure under flooding may be due to release of stress ethylene. In the relative absence of stomata from the stolons, cellular (apoplastic) water transport in strawberry stolons was primarily driven by water channel activity with a gradient from the tip of the stolon to the base, concomitant with xylem differentiation and decreased water transport potential from the stolon tip to its base. Reduced water potential in the stolons under drought are discussed with respect to reduced putative water channel activity.
Keywords:Fragaria ananassa Duch    Plant stress  Source-sink  Stomata  Strawberry  Transpiration  Water channel  Water potential  Water stress  Water transport
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号