首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nitrate depletion in the riparian zone and stream channel of a small headwater catchment
Authors:A Bryce Cooper
Institution:(1) Department of Scientific and Industrial Research, Water Quality Centre, PO Box 11-115, Hamilton, New Zealand
Abstract:A mass balance procedure was used to determine rates of nitrate depletion in the riparian zone and stream channel of a small New Zealand headwater stream. In all 12 surveys the majority of nitrate loss (56–100%) occurred in riparian organic soils, despite these soils occupying only 12% of the stream's border. This disproportionate role of the organic soils in depleting nitrate was due to two factors. Firstly, they were located at the base of hollows and consequently a disproportionately high percentage (37–81%) of the groundwater flowed through them in its passage to the stream. Secondly, they were anoxic and high in both denitrifying enzyme concentration and available carbon. Direct estimates ofin situ denitrification rate for organic soils near the upslope edge (338 mg N m–2 h–1) were much higher than average values estimated for the organic soils as a whole (0.3–2.1 mg N m–2 h–1) and suggested that areas of these soils were limited in their denitrification activity by the supply of nitrate. The capacity of these soils to regulate nitrate flux was therefore under-utilized. The majority of stream channel nitrate depletion was apparently due to plant uptake, with estimates of thein situ denitrification rate of stream sediments being less than 15% of the stream channel nitrate depletion rate estimated by mass balance.This study has shown that catchment hydrology can interact in a variety of ways with the biological processes responsible for nitrate depletion in riparian and stream ecosystems thereby having a strong influence on nitrate flux. This reinforces the view that those seeking to understand the functioning of these ecosystems need to consider hydrological phenomena.
Keywords:denitrification  riparian zone  stream  plant uptake  mass balance  ground water
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号