首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Internal heterotrophy following the switch from macrophytes to algae in Lake Apopka, Florida
Authors:Roger W Bachmann  Mark V Hoyer  Daniel E Canfield Jr
Institution:(1) Department of Fisheries and Aquatic Sciences, University of Florida, 7922 NW 71st Street, Gainesville, FL, 32653, U.S.A.
Abstract:Measurements of photosynthesis and community respiration in Lake Apopka, Florida, U.S.A. indicate that this lake may be heterotrophic, and that the source of extra organic carbon is internal rather than external to the lake. This large and shallow lake (area 124 km2, mean depth 1.7 m) was dominated by macrophytes until hurricane-associated winds disrupted the plants in 1947, and the lake switched to a turbid, algal state. A layer of flocculent, organic sediments covers the lakebed to an average depth of 45 cm and winds regularly resuspend the upper portion into the water column. We used the diel oxygen curve method to estimate production and respiration and also reanalyzed the results of five past studies of production in the lake. The production measurements did not support the hypothesis that the flocculent layer represented excess algal production since 1947. Community respiration exceeded gross production on 60 out of 76 days sampled with statistically significant negative net production found in two of the three studies using the light and dark bottle oxygen method. External supplies of organic carbon are relatively small and are balanced by losses through the outlet. If the lake is heterotrophic, the excess respiration is most likely supported by the remains of macrophytes deposited in the sediments prior to the switch to an algal state. Similar sediment oxidation probably occurs in other shallow lakes that switch from the macrophyte to the algal state.
Keywords:primary production  respiration  carbon flow  sediment resuspension  alternative stable states
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号