首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of hydrologic changes on aboveground production and surface water chemistry in two boreal peatlands in Alberta: Implications for global warming
Authors:Thormann  Markus N  Bayley  Suzanne E  Szumigalski  Anthony R
Institution:(1) Department of Biological Sciences, CW-405, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada;(2) #339, 78 College Avenue West, Guelph, Ontario, N1G 4S7, Canada
Abstract:Aboveground net primary production (NPP) and surface water chemistryvariables were monitored in a lacustrine sedge fen and a bog for four years.There were no significant differences in precipitation, mean growing seasonannual temperature, and number of growing degree days from 1991 to 1994. Themean annual water levels in the lacustrine sedge fen differed significantly,whereas they were similar in the bog during these four years. We measured 15surface water variables in the lacustrine sedge fen and the bog, and foundthat only two correlated significantly with water level fluctuations. In thelacustrine sedge fen, calcium correlated positively (r2= 0.56) and nitrate correlated negatively (r2 =0.20) with water levels. In the bog, potassium correlated positively(r2 = 0.88) and total dissolved phosphorus correlatednegatively (r2 = 0.62) with water levels. The remainingchemical variables showed no significant correlations with water levelfluctuations. Net primary production of the different vegetation strataappeared to respond to different environmental variables. In the lacustrinesedge fen, graminoid production was explained to a significant degree bywater levels (r2 = 0.53), whereas shrub production wasexplained to a significant degree by surface water chemistry variables, suchas nitrate (r2 = 0.74) and total phosphorus(r2 = 0.22). In the bog, temperature was the onlyvariable that explained moss production to a significant degree(r2 = 0.71), whereas ammonium explained graminoidproduction (r2 = 0.66) and soluble reactive phosphorusexplained shrub production to significant degrees (r2 =0.71). There are few direct data on the impact of climatic warming in borealwetlands, although paleoecological and 2×CO2 model datahave provided some indications of past and possibly future changes invegetation composition, respectively. Our results suggest that thelacustrine sedge fen may succeed to a bog dominated by Sphagnum spp. andPicea mariana, whereas the bog may succeed to an upland-type forestecosystem. This revised version was published online in July 2006 with corrections to the Cover Date.
Keywords:bog  fen  water levels  aboveground plant production  surface water chemistry  global warming
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号