首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of Simulated Climate Change on Soil Respiration in a Mediterranean-Type Ecosystem: Rainfall and Habitat Type are More Important than Temperature or the Soil Carbon Pool
Authors:Luis Matías  Jorge Castro  Regino Zamora
Institution:(1) Grupo de Ecolog?a Terrestre, Departamento de Ecolog?a, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain;(2) Present address: Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
Abstract:Soil respiration (R S) is known to be highly sensitive to different environmental factors, such as temperature, precipitation, and the soil carbon (C) pool. Thus, the scenario of global change expected for the coming decades might imply important consequences for R S dynamics. In addition, all of these factors may have an interactive effect, and the consequences are often confounded. We performed a field experiment to analyze the effect of soil moisture and habitat type on R S in a Mediterranean-type ecosystem by simulating three possible climate scenarios differing in the precipitation amount during summer (drier, wetter, and current precipitation pattern) in the main successional habitats in the area (forest, shrubland, and open habitat). We also considered other factors that would affect R S, such as the soil C pool and microbial biomass. By the use of structural-equation modeling (SEM), we disentangled the interactive effects of the different factors affecting R S. A higher simulated precipitation boosted R S for the different habitats across the sampling period (14.6% higher respect to control), whereas the more severe simulated drought reduced it (19.2% lower respect to control), a trend that was similar at the daily scale. Temperature had, by contrast, scant effects on R S. The SEM analysis revealed a positive effect of moisture and canopy cover on R S, whereas the effect of temperature was weaker and negative. Soil C pool and microbial biomass did not affect R S. We conclude that the precipitation changes expected for the coming decades would play a more important role in controlling R S than would other factors. Thus, the projected changes in the precipitation pattern may have much more profound direct effects on R S than will the projected temperature increases.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号