首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Calcium alters capacitation and progressive motility of uterine spermatozoa from +/+ and congenic tw32/+ mice.
Authors:P Olds-Clarke  R Sego
Institution:Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140-5104.
Abstract:The importance of calcium-dependent sperm processes for fertilization in vitro is well known, but their interaction with sperm transport in vivo is not yet clear. To determine whether exposure to calcium alters sperm physiology after incubation in the uterus, spermatozoa from +/+ mice were incubated in medium with 1.7 mM calcium prior to artificial insemination (AI). Spermatozoa from congenic tw32/+ mice were also tested because their flagella are hypersensitive to calcium. As a control, spermatozoa were incubated in calcium-deficient medium before AI. When recovered from the uterus 60 min post-AI, neither prior exposure to calcium nor genotype affected numbers of spermatozoa, or percentage of motile or acrosome-reacted spermatozoa. However, significantly more calcium-treated spermatozoa were capacitated and significantly fewer were progressively motile than spermatozoa preincubated without calcium. In addition, significantly fewer spermatozoa from tw32/+ mice than from +/+ mice were progressively motile. These results suggest that uterine sperm physiology is changed by prior exposure of sperm to calcium. Since the level of progressive motility of spermatozoa recovered from the uterus was correlated with their ability to reach the oviduct (as determined in a previous study), these data support the hypothesis that progressive motility of uterine spermatozoa is important for passage to the oviduct and fertility.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号