首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Both the hydrophobicity and a positively charged region flanking the C-terminal region of the transmembrane domain of signal-anchored proteins play critical roles in determining their targeting specificity to the endoplasmic reticulum or endosymbiotic organelles in Arabidopsis cells
Authors:Lee Junho  Lee Hyunkyung  Kim Jinho  Lee Sumin  Kim Dae Heon  Kim Sanguk  Hwang Inhwan
Institution:aDivision of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea;bDivision of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
Abstract:Proteins localized to various cellular and subcellular membranes play pivotal roles in numerous cellular activities. Accordingly, in eukaryotic cells, the biogenesis of organellar proteins is an essential process requiring their correct localization among various cellular and subcellular membranes. Localization of these proteins is determined by either cotranslational or posttranslational mechanisms, depending on the final destination. However, it is not fully understood how the targeting specificity of membrane proteins is determined in plant cells. Here, we investigate the mechanism by which signal-anchored (SA) proteins are differentially targeted to the endoplasmic reticulum (ER) or endosymbiotic organelles using in vivo targeting, subcellular fractionation, and bioinformatics approaches. For targeting SA proteins to endosymbiotic organelles, the C-terminal positively charged region (CPR) flanking the transmembrane domain (TMD) is necessary but not sufficient. The hydrophobicity of the TMD in CPR-containing proteins also plays a critical role in determining targeting specificity; TMDs with a hydrophobicity value >0.4 on the Wimley and White scale are targeted primarily to the ER, whereas TMDs with lower values are targeted to endosymbiotic organelles. Based on these data, we propose that the CPR and the hydrophobicity of the TMD play a critical role in determining the targeting specificity between the ER and endosymbiotic organelles.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号