首页 | 本学科首页   官方微博 | 高级检索  
   检索      


ERAD-related E2 and E3 enzymes modulate the drought response by regulating the stability of PIP2 aquaporins
Authors:Qian Chen  Ruijun Liu  Yaorong Wu  Shaowei Wei  Qian Wang  Yunna Zheng  Ran Xia  Xiaoling Shang  Feifei Yu  Xiaoyuan Yang  Lijing Liu  Xiahe Huang  Yingchun Wang  Qi Xie
Abstract:Endoplasmic reticulum-associated degradation (ERAD) is known to regulate plant responses to diverse stresses, yet its underlying molecular mechanisms and links to various stress signaling pathways are poorly understood. Here, we show that the ERAD component ubiquitin-conjugating enzyme UBC32 positively regulates drought tolerance in Arabidopsis thaliana by targeting the aquaporins PIP2;1 and PIP2;2 for degradation. Furthermore, we demonstrate that the RING-type ligase Rma1 acts together with UBC32 and that the E2 activity of UBC32 is essential for the ubiquitination of Rma1. This complex ubiquitinates a phosphorylated form of PIP2;1 at Lys276 to promote its degradation, thereby enhancing plant drought tolerance. Extending these molecular insights into crops, we show that overexpression of Arabidopsis UBC32 also improves drought tolerance in rice (Oryza sativa). Thus, beyond uncovering the molecular basis of an ERAD-regulated stress response, our study suggests multiple potential strategies for engineering crops with improved drought tolerance.

The ubiquitin-conjugating enzyme UBC32 enhances drought tolerance by cooperating with the RING-type E3 ligase Rma1 to ubiquitinate a phosphorylated form of PIP2;1 at Lys276 to promote its degradation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号