首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Models in which many cross-bridges attach simultaneously can explain the filament movement per ATP split during muscle contraction
Authors:Barclay C J
Institution:

School of Physiotherapy and Exercise Science, Griffith University, Gold Coast Campus, PMB 50 Gold Coast Mail Centre, Queensland 9726, Australia

Abstract:Contractile filaments in skeletal muscle are moved by less than 2 nm for each ATP used. If just one cross-bridge is attached to each thin filament at any instant then this distance represents the fundamental myosin cross-bridge step size (i.e. the distance one cross-bridge moves a thin filament in one ATP-splitting cycle). However, most contraction models assume many cross-bridges are attached at any instant along each thin filament. The purpose of this study was to establish whether the net filament sliding per ATP used could be explained quantitatively in terms of a cross-bridge model in which multiple cross-bridges are attached along each thin filament. It was found that the relationship between net filament sliding per ATP split and the load against which the muscle shortens is compatible with such a model and furthermore predicts that the cross-bridge step size is between 7.5 and 12.5 nm over most of the range of loads. These values were similar for different muscle fibre types.
Keywords:Muscle contraction  Muscle energy use  Skeletal muscle  Muscle models
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号