首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hydroxamate-Stimulated O(2) Uptake in Roots of Pisum sativum and Zea mays, Mediated by a Peroxidase : Its Consequences for Respiration Measurements
Authors:Brouwer K S  van Valen T  Day D A  Lambers H
Institution:Department of Plant Physiology, University of Groningen, P.O. Box 14, 9750 AA Haren (Gr), The Netherlands.
Abstract:Low concentrations of salicylhydroxamic acid (<5 millimolar) stimulate O2 uptake in intact roots of Pisum sativum. We demonstrate that the hydroxamate-stimulated O2 uptake does not reside in the mitochondria. We also show that the hydroxamate-stimulated O2 uptake is due to the activation of a peroxidase catalyzing reduction of O2. This peroxidase, which can use both NADH and NADPH as a substrate, is stimulated by low concentrations of monophenols, e.g. salicylhydroxamic acid and 2-methoxyphenol. It is inhibited by high (20 millimolar) concentrations of salicylhydroxamic acid, cyanide, and scavengers of the superoxide free radical ion, e.g. ascorbate, gentisic acid, and catechol. In the presence of gentisic acid, O2 uptake by intact pea roots was no longer stimulated by low concentrations of salicylhydroxamic acid. The consequence of the present finding for in vivo respiration measurements is that the use of low concentrations of salicylhydroxamic acid and uncoupler is reliable only in the presence of a suitable superoxide free radical scavenger which prevents activation of the peroxidase. It also confirms that high concentrations of salicylhydroxamic acid (20-25 millimolar) can be safely used in short-term experiments to assess the activity of the alternative path in intact roots.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号