首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants
Authors:Zhang Aying  Jiang Mingyi  Zhang Jianhua  Tan Mingpu  Hu Xiuli
Institution:College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
Abstract:The role of mitogen-activated protein kinase (MAPK) in abscisic acid (ABA)-induced antioxidant defense was investigated in leaves of maize (Zea mays) plants. Treatments with ABA or H(2)O(2) induced the activation of a 46-kD MAPK and enhanced the expression of the antioxidant genes CAT1, cAPX, and GR1 and the total activities of the antioxidant enzymes catalase, ascorbate peroxidase, glutathione reductase, and superoxide dismutase. Such enhancements were blocked by pretreatment with several MAPK kinase inhibitors and reactive oxygen species inhibitors or scavengers. Pretreatment with MAPK kinase inhibitors also substantially arrested the ABA-induced H(2)O(2) production after 2 h of ABA treatment, but did not affect the levels of H(2)O(2) within 1 h of ABA treatment. Pretreatment with several inhibitors of protein tyrosine phosphatase, which is believed to be a negative regulator of MAPK, only slightly prevented the ABA-induced H(2)O(2) production, but did not affect the ABA-induced MAPK activation and ABA-enhanced antioxidant defense systems. These results clearly suggest that MAPK but not protein tyrosine phosphatase is involved in the ABA-induced antioxidant defense, and a cross talk between H(2)O(2) production and MAPK activation plays a pivotal role in the ABA signaling. ABA-induced H(2)O(2) production activates MAPK, which in turn induces the expression and the activities of antioxidant enzymes. The activation of MAPK also enhances the H(2)O(2) production, forming a positive feedback loop.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号